REVIEW

SIRTain regulators of premature senescence and accelerated aging

  • Shrestha Ghosh 1 ,
  • Zhongjun Zhou , 1,2
Expand
  • 1. Department of Biochemistry, The University of Hong Kong, Hong Kong, China
  • 2. Shenzhen Institute of Innovation and Technology, The University of Hong Kong, Hong Kong, China

Received date: 17 Dec 2014

Accepted date: 28 Feb 2015

Published date: 08 May 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The sirtuin proteins constitute class III histone deacetylases (HDACs). These evolutionarily conserved NAD+-dependent enzymes form an important component in a variety of cellular and biological processes with highly divergent as well as convergent roles in maintaining metabolic homeostasis, safeguarding genomic integrity, regulating cancer metabolism and also inflammatory responses. Amongst the seven known mammalian sirtuin proteins, SIRT1 has gained much attention due to its widely acknowledged roles in promoting longevity and ameliorating age-associated pathologies. The contributions of other sirtuins in the field of aging are also gradually emerging. Here, we summarize some of the recent discoveries in sirtuins biology which clearly implicate the functions of sirtuin proteins in the regulation of premature cellular senescence and accelerated aging. The roles of sirtuins in various cellular processes have been extrapolated to draw inter-linkage with anti-aging mechanisms. Also, the latest findings on sirtuins which might have potential effects in the process of aging have been reviewed.

Cite this article

Shrestha Ghosh , Zhongjun Zhou . SIRTain regulators of premature senescence and accelerated aging[J]. Protein & Cell, 2015 , 6(5) : 322 -333 . DOI: 10.1007/s13238-015-0149-1

1
Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA (2007) Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol cell25: 543-557

DOI

2
Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A (2012) The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J BiolChem287: 40924-40937

DOI

3
Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT, Chen D (2013) SIRT3 reverses aging-associated degeneration. Cell reports3: 319-327

DOI

4
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinot M, Sutphin GL, Leko V, Mcelwee JJ (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature477: 482-485

DOI

5
Cai Y, Sheng ZY, Liang SX (2014) Radiosensitization Effect of Overexpression of Adenovirus-mediated SIRT6 on A549 Nonsmall Cell Lung Cancer Cells. Asian Pacific Journal of Cancer Prevention15: 7297-7301

DOI

6
Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends in Endocrinology & Metabolism25: 138-145

DOI

7
Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends in molecular medicine13: 64-71

DOI

8
Chen J, Xavier S, Moskowitz-Kassai E, Chen R, Lu CY, Sanduski K, Spes A, Turk B, Goligorsky MS (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. The American journal of pathology180: 973-983

DOI

9
Cheng HL, Mostoslavsky R, Saito SI, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)- deficient mice. ProcNatlAcadSci100: 10794-10799

DOI

10
Choi JE, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Current Opinion In Genetics & Development26: 24-32

DOI

11
Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito SI, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N (2005) Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab2: 67-76

DOI

12
de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Frontiers in pharmacology3: 82

DOI

13
Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PH, Qiu Y, Zhao Y (2013) SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nature neuroscience16: 1008-1015

DOI

14
Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan HB, Feldman J, Pierce K, Mostoslavsky R (2012) The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol cell48: 900-913

DOI

15
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. The Journal of Neuroscience32: 124-132

DOI

16
Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G, Cohen HY (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell reports4: 905-912

DOI

17
Fu J, Jin J, Cichewicz RH, Hageman SA, Ellis TK, Xiang L, Peng Q, Jiang M, Arbez N, Hotaling K (2012) trans-(-)-ϵ-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J BiolChem287: 24460-24472

DOI

18
Ghosh S, Zhou Z (2014) Genetics of aging, progeria and lamin disorders. Current opinion in genetics & development26: 41-46

DOI

19
Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends in Genetics30: 271-286

DOI

20
Glorioso C, Oh S, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiology of disease41: 279-290

DOI

21
Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, Bennett M(2013) Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation127: 386-396

DOI

22
Gorospe M, de Cabo R (2008) AsSIRTing the DNA damage response. Trends in cell biology18: 77-83

DOI

23
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell126: 941-954

DOI

24
Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Comm1: 3

DOI

25
Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzmanz E, Lam MM, Schwer B (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell44: 177-190

DOI

26
Ho L, Titus AS, Banerjee KK, George S, Lin W, Deota S, Saha AK, Nakamura K, Gut P, Verdin E (2013) SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK. Aging (Albany NY)5: 835

27
Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in pharmacological sciences35: 146-154

DOI

28
Jeong J, Juhn K, Lee H, Kim S, Min B, Lee K, Cho MH, Park GH, Lee K (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental and Molecular Medicine39: 8

DOI

29
Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci108: 14608-14613

DOI

30
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Dev13: 2570-2580

DOI

31
Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIPdeacetylation. Science329: 1348-1353

DOI

32
Kamel C, Abrol M, Jardine K, He X, McBurney MW (2006) Sirt1 fails to affect p53-mediated biological functions. Aging cell5: 81-88

DOI

33
Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar- Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature483: 218-221

DOI

34
Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Onqaiui KC, Boxer LD, Chang HY (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell136: 62-74

DOI

35
Kim W, Kim JE (2013) SIRT7 an emerging sirtuin: deciphering newer rolES. JPP64: 531-534

36
Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazqzuez-Ortiz G, Jeong WI, Park O, Ki SH (2010) Hepaticspecific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab12: 224-236

DOI

37
Kim MY, Kang EL, Ham SA, Hwang JS, Yoo TS, Lee H, Paek KS, Park C, Lee HT, Kim JH (2012) The PPARδ-mediated inhibition of angiotensin II-induced premature senescence in human endothelial cells is SIRT1-dependent. Biochemical pharmacology84: 1627-1634

DOI

38
Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG, Chang YG, Shen Q, Park WS, Lee JY (2013) Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology57: 1055-1067

DOI

39
Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Frontiers in aging neuroscience5: 48

DOI

40
Kugel S, Mostoslavsky R (2012) Chromatin and beyond: the multitasking roles for SIRT6. Trends in biochemical sciences39: 72-81

DOI

41
Kulkarni SS, Cantó C (2014) The molecular targets of Resveratrol. Biochimicaet Biophysica Acta (BBA)-Molecular Basis of Disease14(8): 557-562

42
Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO journal21: 2383-2396

DOI

43
Lappas M (2012) Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators of Inflammation2012: 597514

DOI

44
Laurent G, de Boer VC, Finley LW, Sweeney M, Lu H, Schug TT, Cen Y, Jeong SM, Li X, Sauve AA (2013) SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol Cell Biol33: 4552-4561

DOI

45
Lee HS, Ka SO, Lee SM, Lee SI, Park JW, Park BH (2013) Overexpression of Sirtuin 6 Suppresses Inflammatory Responses and Bone Destruction in Mice With Collagen-Induced Arthritis. Arthritis & Rheumatism65: 1776-1785

DOI

46
Lee N, Kim DK, Kim ES, Park SJ, Kwon JH, Shin J, Park SM, Moon YH, Wang HJ, Gho YS (2014) Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging. Proteomics14: 1610-1622

DOI

47
Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J (2008) Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J BiolChem283: 7590-7598

DOI

48
Li Y, Dai D, Lu Q, Fei M, Li M, Wu X (2013) Sirt2 suppresses glioma cell growth through targeting NF-ĸB-miR-21 axis. BiochemBiophys Res Commun441: 661-667

DOI

49
Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ (2005) Genomic instability in laminopathy-based premature aging. Nat Med11: 780-785

DOI

50
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y (2012) Resveratrol rescues SIRT1- dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab16: 738-750

DOI

51
Luna A, Aladjem MI, Kohn KW (2013) SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome integrity4: 6

DOI

52
Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science332: 1443-1446

DOI

53
Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA109: 11800-11805

DOI

54
McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY)1: 109

55
Mellini P, Valente S, Mai A (2014) Sirtuin modulators: an updated patent review (2012-2014). Expert Opinion on Therapeutic Patents (0), 1-11

DOI

56
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation120: 1524-1532

DOI

57
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell16: 4623-4635

DOI

58
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature452: 492-496

DOI

59
Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle8: 2664-2666

DOI

60
Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron67: 953-966

DOI

61
Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY (2014) SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer research74: 5925-5933

DOI

62
Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE (2014) Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging6: 820-834

63
Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PloS one8: e54514

DOI

64
Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell124: 315-329

DOI

65
Nakagawa T, Guarente L (2009) Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging1: 578-581

66
Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Geneviève D, Hadj-Rabia S, Gaudy-Marqueste C, Smitt HS, Vabres P (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Human molecular genetics13: 2493-2503

DOI

67
Nguyen P, Lee S, Lorang-Lenis D, Trepel J, Smart DK (2014) SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res12: 1244-1253

DOI

68
North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S, Dai J, Baker DJ, Cen Y, Wu LE, Sauve AA (2014) SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. The EMBO journal33: 1438-1453

DOI

69
Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. Journal of Molecular and Cellular Cardiology43: 571-579

DOI

70
Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 28: 1634-1639

DOI

71
Paredes S, Villanova L, Chua KF (2014) Molecular Pathways: Emerging Roles of Mammalian Sirtuin SIRT7 in Cancer. Clinical Cancer Research20: 1741-1746

DOI

72
Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Mol Cell Biol29: 4116-4129

DOI

73
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab18: 920-933

DOI

74
Rehan L, Laszki-Szcząchor K, Sobieszczańska M, Polak-Jonkisz D (2014) SIRT1 and NAD as regulators of ageing. Life sciences105: 1-6

DOI

75
Rimmelé P, Bigarella CL, Liang R, Izac B, Dieguez-Gonzalez R, Barbet G, Donovan M, Brugnara C, Blander JM, Sinclair DA (2014) Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells. Stem Cell Reports3: 44-59

DOI

76
Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C (2009) Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer immunology, immunotherapy58: 1909-1917

DOI

77
Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai SI (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab18: 416-430

DOI

78
Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene26: 5489-5504

DOI

79
Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY)2(7): 415-431

80
Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-olive MM (2014) A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab20: 840-855

DOI

81
Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y (2013) Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. NatChemBiol9: 693-700

DOI

82
Schreiber KH, Kennedy BK (2013) When lamins go bad: nuclear structure and disease. Cell152: 1365-1375

DOI

83
Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell151: 1185-1199

DOI

84
Shih J, Donmez G (2013) Mitochondrial sirtuins as therapeutic targets for age-related disorders. Genes & cancer4: 91-96

DOI

85
Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K (2013) SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell reports5: 654-665

DOI

86
Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS (2006) Mutant nuclear laminA leads to progressive alterations of epigenetic control in premature aging. PNAS103: 8703-8708

DOI

87
Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med18: 1643-1650

DOI

88
Thirumurthi U, Shen J, Xia W, LaBaff AM, Wei Y, Li CW, Chang WC, Chen CH, Lin HK, Yu D (2014) MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling7: ra71

DOI

89
Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell51: 454-468

DOI

90
Tran D, Bergholz J, Zhang H, He H, Wang Y, Zhang Y, Li Q, Kirkland JL, Xiao ZX (2014) Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell13: 669-678

DOI

91
Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmüller L, Gatz SA (2010) Role of SIRT1 in homologous recombination. DNA repair9: 383-393

DOI

92
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Brawn T, Bober E (2008a) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research102: 703-710

DOI

93
Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E (2008b) Sirt7- dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J PhysiolPharmacol59: 201-212

94
Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell cycle10: 3153-3158

DOI

95
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell16: 93-105

DOI

96
Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, Morere J, Fernandez S, Guillet B, Marcelli M (2014) Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood123: 2116-2126

DOI

97
Wang F, Tong Q (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ. MolBiolCell20: 801-808

DOI

98
Wang F, Nguyen M, Qin F, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging cell6: 505-514

DOI

99
Xiao C, Wang RH, Lahusen TJ, Park O, Bertola A, Maruyama T, Reynolds D, Chen Q, Xu X, Young HA (2012) Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J BiolChem287: 41903-41913

DOI

100
Xu Z, Zhang L, Fei X, Yi X, Li W, Wang Q (2014) The miR-29b–Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species. Cellular signalling26: 1500-1505

DOI

101
Yamagata K, Kitabayashi I (2009) Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX. Biochemical and biophysical research communications390: 1355-1360

DOI

102
Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Ronty M (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest122: 2032-2045

DOI

103
Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T, Go S, Tasaki M, Uchimura K, Kadomatsu T (2014) SIRT7 Controls Hepatic Lipid Metabolism by Regulating the Ubiquitin-Proteasome Pathway. Cell metabolism19(4): 712-721

DOI

104
Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST (2012) SIRT1 is required for long-term growth of human mesenchymal stem cells. Journal of molecular medicine90: 389-400

DOI

105
Yuan H, Su L, Chen WY (2013) The emerging and diverse roles of sirtuins in cancer: a clinical perspective. OncoTargets and therapy6: 1399

106
Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell140: 280-293

DOI

107
Zhu H, Zhao L, Wang E, Dimova N, Liu G, Feng Y, Cambi F (2012) The QKI-PLP pathway controls SIRT2 abundance in CNS myelin. Glia60: 69-82

DOI

108
Zhu Y, Yan Y, Principe DR, Zou X, Vassilopoulos A, Gius D (2014) SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism2: 1-11

DOI

Outlines

/