RESEARCH ARTICLE

Phosphorylation of Atg31 is required for autophagy

  • Wenzhi Feng 1 ,
  • Tong Wu 2 ,
  • Xiaoyu Dan 2 ,
  • Yuling Chen 3 ,
  • Lin Li 4 ,
  • She Chen 4 ,
  • Di Miao 3 ,
  • Haiteng Deng 3 ,
  • Xinqi Gong , 5 ,
  • Li Yu , 2
Expand
  • 1. PTN Program, College of Life Science, Peking University, Beijing 100871, China
  • 2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
  • 3. Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
  • 4. National Institute of Biological Sciences, Beijing 102206, China
  • 5. Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China

Received date: 17 Dec 2014

Accepted date: 23 Jan 2015

Published date: 13 Apr 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.

Cite this article

Wenzhi Feng , Tong Wu , Xiaoyu Dan , Yuling Chen , Lin Li , She Chen , Di Miao , Haiteng Deng , Xinqi Gong , Li Yu . Phosphorylation of Atg31 is required for autophagy[J]. Protein & Cell, 2015 , 6(4) : 288 -296 . DOI: 10.1007/s13238-015-0138-4

1
Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell16: 3438-3453

DOI

2
DeLano WLT (2002) The PyMOL molecular graphics system. CCP4 Newslett Protein Crystallogr40: 82-92

3
Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics21: 3433-3434

DOI

4
Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, . (2010) Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Proteins78: 3150-3155

DOI

5
Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol131: 591-602

DOI

6
Hussey S, Travassos LH, Jones NL (2009) Autophagy as an emerging dimension to adaptive and innate immunity. Semin Immunol21: 233-241

DOI

7
Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res32: 1037-1049

DOI

8
Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res24: 69-79

DOI

9
Joosten RP, te Beek TAH, Krieger E (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res39: D411-D419

DOI

10
Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun356: 405-410

DOI

11
Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y (2009) Characterization of the Atg17–Atg29–Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Research Commun389: 612-615

DOI

12
Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

13
Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxidebridged dinuclear zinc(ii) complex. Dalton Trans8: 1189-1193

DOI

14
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for autophagy-related genes. Dev Cell5(4): 539-545

DOI

15
Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori, S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol16: 1026-1035

DOI

16
Longtine MS, McKenzie A III, Demarini DJ, Shah NG, Wach A, Peter Philippsen AB, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14(8): 953-961

DOI

17
Lu J-Y, Lin Y-Y, Sheu J-C, Wu J-T, Lee F-J, Chen Y, Lin M-I, Chiang F-T, Tai T-Y, Berger SL (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell146: 969-979

DOI

18
Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR (2014) Autophagy in huntington disease and huntingtin in autophagy. Trends Neurosci38(1): 26-35

DOI

19
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell147: 728-741

DOI

20
Pronk Sander, Pail Szilard, Schulz Roland (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics29(7): 845

DOI

21
Ragusa Michael J, Stanley Robin E, Hurley James H (2012) Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell151: 1501-1512

DOI

22
Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell6: 79-90

DOI

23
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc5: 725-738

DOI

24
Suzuki K, Ohsumi Y (2010) Current knowledge of the preautophagosomal structure (PAS). FEBS Lett584: 1280-1286

DOI

25
Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett349: 275-280

DOI

26
Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci27: 527-533

DOI

27
Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett333: 169-174

DOI

28
Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta1782: 723-729

DOI

29
Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol198: 219-233

DOI

30
Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science336: 474-477

DOI

Outlines

/