
Pay Attention to the Osteochondromas in Fibrodysplasia Ossificans Progressiva
Longqing Li, Minxun Lu, Xuanhong He, Chang Zou, Chuanxi Zheng, Yitian Wang, Fan Tang, Yi Luo, Yong Zhou, Li Min, Chongqi Tu
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (3) : 781-787.
Pay Attention to the Osteochondromas in Fibrodysplasia Ossificans Progressiva
Background: Fibrodysplasia ossificans progressiva (FOP) is an extremely rare disease characterized by malformation of the bilateral great toes and progressive heterotopic ossification. The clinical features of FOP occur due to dysfunction of the bone morphogenetic protein (BMP) signaling pathway induced by the mutant activin A type I receptor/activin-like kinase-2 (ACVR1/ALK2) which contributes to the clinical features in FOP. Dysregulation of the BMP signaling pathway causes the development of osteochondroma. Poor awareness of the association between FOP and osteochondromas always results in misdiagnosis and unnecessary invasive operation.
Case Presentation: In this study, we present a case of classical FOP involving osteochondroma. An 18-year-old male adolescent, born with deformity of bilateral big toes, complained multiple masses on his back for 1 year. The mass initially emerged with a tough texture and did not cause pain. It was misdiagnosed as an osteochondroma. After two surgeries, the masses became hard and spread around the entire back region. Meanwhile, extensive heterotopic ossification was observed around the back, neck, hip, knee, ribs, and mandible during follow-up. Osteochondromas were observed around the bilateral knees. No abnormalities were observed in the laboratory blood test results. Whole exome sequencing revealed missense mutation of ACVR1/ALK2 (c.617G > A; p.R206H) in the patient and confirmed the diagnosis of FOP.
Conclusion: In summary, classical FOP always behaves as a bilateral deformity of the big toes, as well as progressive ectopic ossification and osteochondromas in the distal femur and proximal tibia. An understanding of the association between osteochondromas and FOP aids in diagnosis and avoids unnecessary invasive management in patients.
ACVR1/ALK2 / Association / Bone Morphogenetic Protein / Fibrodysplasia Ossificans Progressiva / Osteochondromas
[1] |
Rocke DM, Zasloff M, Peeper J, Cohen RB, Kaplan FS. Age- and joint-specific risk of initial heterotopic ossification in patients who have fibrodysplasia ossificans progressiva. Clin Orthop Relat Res. 1994;301:243–248.
|
[2] |
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4):e10172.
|
[3] |
Kaplan FS, Le Merrer M, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, et al. Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheumatol. 2008;22(1):191–205.
|
[4] |
Akesson LS, Savarirayan R. Fibrodysplasia Ossificans Progressiva [M]//Adam M P, Ardinger H H, Pagon R A, et al. GeneReviews (®). Seattle (WA): University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.
|
[5] |
Pignolo RJ, Shore EM, Kaplan FS. Fibrodysplasia Ossificans Progressiva: clinical and genetic aspects. Orphanet J Rare Dis. 2011;6(1):80.
|
[6] |
Kaplan FS, Zasloff MA, Kitterman JA, Shore EM, Hong CC, Rocke DM. Early mortality and cardiorespiratory failure in patients with Fibrodysplasia Ossificans Progressiva. J Bone Joint Surg Am. 2010;92(3):686–691.
|
[7] |
Zhang W, Zhang K, Song L, Pang J, Ma H, Shore EM, et al. The phenotype and genotype of fibrodysplasia ossificans progressiva in China: a report of 72 cases. Bone. 2013;57(2):386–391.
|
[8] |
Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L, et al. ACVR1R206Hreceptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin a. Sci Transl Med. 2015;7(303):303ra137.
|
[9] |
Agarwal S, Loder SJ, Brownley C, Eboda O, Peterson JR, Hayano S, et al. BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev Biol. 2015;400(2):202–209.
|
[10] |
Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38(5):525–527.
|
[11] |
Kitsoulis P, Galani V, Stefanaki K, Paraskevas G, Karatzias G, Agnantis NJ, et al. Osteochondromas: review of the clinical, radiological and pathological features. In Vivo. 2008;22(5):633–646.
|
[12] |
Deirmengian GK, Hebela NM, O'Connell M, Laser DL, Shore EM, Kaplan FS. Proximal tibial osteochondromas in patients with fibrodysplasia ossificans progressiva. J Bone Joint Surg Am. 2008;90(2):366–374.
|
[13] |
Morales-Piga A, Bachiller-Corral J, González-Herranz P, Medrano-SanIldelfonso M, Olmedo-Garzón J, Sánchez-Duffhues G. Osteochondromas in fibrodysplasia ossificans progressiva: a widespread trait with a streaking but overlooked appearance when arising at femoral bone end. Rheumatol Int. 2015;35(10):1759–1767.
|
[14] |
Nakase T, Myoui A, Shimada K, Kuriyama K, Joyama S, Miyaji T, et al. Involvement of BMP-2 signaling in a cartilage cap in osteochondroma. J Orthop Res. 2001;19(6):1085–1088.
|
[15] |
Sekimata K, Sato T, Sakai N. ALK2: a therapeutic target for Fibrodysplasia Ossificans Progressiva and diffuse intrinsic pontine glioma. Chem Pharm Bull (Tokyo). 2020;68(3):194–200.
|
[16] |
Chichareon V, Arpornmaeklong P, Donsakul N. Fibrodysplasia ossificans progressiva and associated osteochondroma of the coronoid process in a child. Plast Reconstr Surg. 1999;103(4):1238–1243.
|
[17] |
Lutwak L. Myositis ossificans progressiva. Mineral, metabolic and radioactive calcium studies of the effects of hormones. Am J Med. 1964;37:269–293.
|
[18] |
Cremin B, Connor JM, Beighton P. The radiological spectrum of fibrodysplasia ossificans progressiva. Clin Radiol. 1982;33(5):499–508.
|
[19] |
Bauer AH, Bonham J, Gutierrez L, Hsiao EC, Motamedi D. Fibrodysplasia ossificans progressiva: a current review of imaging findings. Skeletal Radiol. 2018;47(8):1043–1050.
|
[20] |
Pignolo RJ, Shore EM, Kaplan FS. Fibrodysplasia ossificans progressiva: diagnosis, management, and therapeutic horizons. Pediatr Endocrinol Rev. 2013;10 Suppl 2(0 2):437–448.
|
[21] |
Qi Z, Luan J, Zhou X, Cui Y, Han J. Fibrodysplasia ossificans progressiva: basic understanding and experimental models. Intractable Rare Dis. Res. 2017;6(4):242–248.
|
[22] |
Haupt J, Deichsel A, Stange K, Ast C, Bocciardi R, Ravazzolo R, et al. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant. Hum Mol Genet. 2014;23(20):5364–5377.
|
[23] |
Petrie KA, Lee WH, Bullock AN, Pointon JJ, Smith R, Russell RGG, et al. Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients. PloS One. 2009;4(3):e5005.
|
[24] |
Whyte MP, Wenkert D, Demertzis JL, DiCarlo EF, Westenberg E, Mumm S. Fibrodysplasia ossificans progressiva: middle-age onset of heterotopic ossification from a unique missense mutation (c.974G>C, p.G325A) in ACVR1. J Bone Miner Res. 2012;27(3):729–737.
|
[25] |
Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–390.
|
[26] |
Furuya H, Ikezoe K, Wang L, Ohyagi Y, Motomura K, Fujii N, et al. A unique case of fibrodysplasia ossificans progressiva with an ACVR1 mutation, G356D, other than the common mutation (R206H). Am J Med Genet A. 2008;146a(4):459–463.
|
[27] |
Bocciardi R, Bordo D, Di Duca M, Di Rocco M, Ravazzolo R. Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Eur J Hum Genet. 2009;17(3):311–318.
|
[28] |
Ratbi I, Bocciardi R, Regragui A, Ravazzolo R, Sefiani A. Rarely occurring mutation of ACVR1 gene in Moroccan patient with fibrodysplasia ossificans progressiva. Clin Rheumatol. 2010;29(1):119–121.
|
[29] |
Eresen Yazicioğlu C, Karatosun V, Kizildağ S, Ozsoylu D, Kavukçu S. ACVR1 gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene. 2013;515(2):444–446.
|
[30] |
Culbert AL, Chakkalakal SA, Theosmy EG, Brennan TA, Kaplan FS, Shore EM. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells. 2014;32(5):1289–1300.
|
[31] |
Towler OW, Peck SH, Kaplan FS, Shore EM. Dysregulated BMP signaling through ACVR1 impairs digit joint development in fibrodysplasia ossificans progressiva (FOP). Dev Biol. 2021;470:136–146.
|
[32] |
Minina E, Schneider S, Rosowski M, Lauster R, Vortkamp A. Expression of Fgf and Tgfbeta signaling related genes during embryonic endochondral ossification. Gene Expr Patterns. 2005;6(1):102–109.
|
[33] |
Maftei C, Rypens F, Thiffault I, Dubé J, Laberge AM, Lemyre E. Fibrodysplasia ossificans progressiva: bilateral hallux valgus on ultrasound a clue for the first prenatal diagnosis for this condition-clinical report and review of the literature. Prenat Diagn. 2015;35(3):305–307.
|
[34] |
Chakkalakal SA, Zhang D, Culbert AL, Convente MR, Caron RJ, Wright AC, et al. An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res. 2012;27(8):1746–1756.
|
[35] |
Chakkalakal SA, Uchibe K, Convente MR, Zhang D, Economides AN, Kaplan FS, et al. Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) mutation. J Bone Miner Res. 2016;31(9):1666–1675.
|
[36] |
Towler OW, Shore EM. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP). Dev Dyn. 2022;251(1):164–177.
|
[37] |
Zhu J, Zhang YT, Alber MS, Newman SA. Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PloS One. 2010;5(5):e10892.
|
[38] |
Raspopovic J, Marcon L, Russo L, Sharpe J. Modeling digits. Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science (New York, NY). 2014;345(6196):566–570.
|
[39] |
Kaplan FS, Al Mukaddam M, Stanley A, Towler OW, Shore EM. Fibrodysplasia ossificans progressiva (FOP): a disorder of osteochondrogenesis. Bone. 2020;140:115539.
|
[40] |
Smith R, Athanasou NA, Vipond SE. Fibrodysplasia (myositis) ossificans progressiva: clinicopathological features and natural history. QJM. 1996;89(6):445–446.
|
[41] |
D'Arienzo A, Andreani L, Sacchetti F, Colangeli S, Capanna R. Hereditary multiple exostoses: Current Insights. Orthop Res Rev. 2019;11:199–211.
|
[42] |
Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell. 2004;6(6):801–813.
|
[43] |
Jiao X, Billings PC, O'connell MP, Kaplan FS, Shore EM, Glaser DL. Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J Biol Chem. 2007;282(2):1080–1086.
|
[44] |
Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336.
|
[45] |
Stickens D, Zak BM, Rougier N, Esko JD, Werb Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development. 2005;132(22):5055–5068.
|
[46] |
Pignolo RJ, Baujat G, Brown MA, de Cunto C, di Rocco M, Hsiao EC, et al. Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes. Orphanet J Rare Dis. 2019;14(1):98.
|
[47] |
Gencer-Atalay K, Ozturk EC, Yagci I, Ata P, Delil K, Ozgen Z, et al. Challenges in the treatment of fibrodysplasia ossificans progressiva. Rheumatol Int. 2019;39(3):569–576.
|
[48] |
Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol. 2019;85(6):1180–1187.
|
[49] |
Kaplan FS, Pignolo RJ, Shore EM. From mysteries to medicines: drug development for fibrodysplasia ossificans progressive. Expert Opin Orphan Drugs. 2013;1(8):637–649.
|
[50] |
Shah ZA, Rausch S, Arif U, el Yafawi B. Fibrodysplasia ossificans progressiva (stone man syndrome): a case report. J Med Case Reports. 2019;13(1):364.
|
[51] |
Benetos IS, Mavrogenis AF, Themistocleous GS, Kanellopoulos AD, Papagelopoulos PJ, Soucacos PN. Optimal treatment of fibrodysplasia ossificans progressiva with surgical excision of heterotopic bone, indomethacin, and irradiation. J Surg Orthop Adv. 2006;15(2):99–104.
|
[52] |
Joice M, Vasileiadis GI, Amanatullah DF. Non-steroidal anti-inflammatory drugs for heterotopic ossification prophylaxis after total hip arthroplasty: a systematic review and meta-analysis. Bone Joint J. 2018;100-b(7):915–922.
|
[53] |
Pennypacker JP, Lewis CA, Hassell JR. Altered proteoglycan metabolism in mouse limb mesenchyme cell cultures treated with vitamin a. Arch Biochem Biophys. 1978;186(2):351–358.
|
[54] |
Benya PD, Padilla SR. Modulation of the rabbit chondrocyte phenotype by retinoic acid terminates type II collagen synthesis without inducing type I collagen: the modulated phenotype differs from that produced by subculture. Dev Biol. 1986;118(1):296–305.
|
[55] |
Zasloff MA, Rocke DM, Crofford LJ, Hahn GV, Kaplan FS. Treatment of patients who have fibrodysplasia ossificans progressiva with isotretinoin. Clin Orthop Relat Res. 1998;346:121–129.
|
[56] |
Bruni L, Giammaria P, Tozzi MC, Camparcola D, Scopinaro F, Imperato C. Fibrodysplasia ossificans progressiva. An 11-year-old boy treated with a diphosphonate. Acta Paediatr Scand. 1990;79(10):994–998.
|
[57] |
Smith R, Russell RG, Woods CG. Myositis ossificans progressiva. Clinical features of eight patients and their response to treatment. J Bone Joint Surg. 1976;58(1):48–57.
|
[58] |
Inubushi T, Lemire I, Irie F, Yamaguchi Y. Palovarotene inhibits Osteochondroma formation in a mouse model of multiple hereditary exostoses. J Bone Miner Res. 2018;33(4):658–666.
|
[59] |
Lees-Shepard JB, Nicholas SE, Stoessel SJ, Devarakonda PM, Schneider MJ, Yamamoto M, et al. Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity. Elife. 2018;7:e40814.
|
[60] |
Shimono K, Tung WE, Macolino C, Chi AHT, Didizian JH, Mundy C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 2011;17(4):454–460.
|
[61] |
Pacifici M. Retinoid roles and action in skeletal development and growth provide the rationale for an ongoing heterotopic ossification prevention trial. Bone. 2018;109:267–275.
|
[62] |
Pavey GJ, Qureshi AT, Tomasino AM, Honnold CL, Bishop DK, Agarwal S, et al. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone. 2016;90:159–167.
|
[63] |
Pignolo RAM, Baujat G, Berglund S, Cheung A, De Cunto C, Delai Pet al,. Palovarotene (PVO) for fibrodysplasia ossificans progressiva (FOP): data from the phase III MOVE trial; proceedings of the ASBMR Virtual Meeting, F. 2020.
|
[64] |
Kaplan FS, Tabas JA, Gannon FH, Finkel G, Hahn GV, Zasloff MA. The histopathology of fibrodysplasia ossificans progressiva. An endochondral process. J Bone Joint Surg Am. 1993;75(2):220–230.
|
[65] |
Sharma A, Maini D, Agarwal G, Sharma P, Maini L. Fibrodysplasia ossificans progressiva – can we diagnose it right at the outset? Turk J Pediatr. 2019;61(6):958–962.
|
/
〈 |
|
〉 |