On Linear Homogeneous Biwave Equations

Yaqian Bai

Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 59-87.

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 59-87. DOI: 10.4208/jpde.v37.n1.4

On Linear Homogeneous Biwave Equations

Author information +
History +

Abstract

The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the ${{L}^{\infty }}({{\mathbb{R}}^{n}})-{{W}^{N,1}}({{\mathbb{R}}^{n}})$ and ${{L}^{\infty }}({{\mathbb{R}}^{n}})-{{W}^{N,2}}({{\mathbb{R}}^{n}})$ estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations.

Keywords

Biwave maps / Duhamel’s principle / Fourier transform / Cauchy peoblem / deacy estimate

Cite this article

Download citation ▾
Yaqian Bai. On Linear Homogeneous Biwave Equations. Journal of Partial Differential Equations, 2024, 37(1): 59‒87 https://doi.org/10.4208/jpde.v37.n1.4

References

[1]
Chiang Y. J., Wei C. H., Global existence and lifespan of smooth solutions of biwave maps. SIAM J. Math. Phys., 63 (2) (2022), 1-14.
[2]
Chiang Y. J., Biwave maps into manifolds. SIAM Int. J. Math. Math. Sci., 2009 (2009), 1-14.
[3]
Chiang Y. J., Some properties of biwave maps. SIAM J. Geom. Phys., 62 (4) (2012), 839-850.
[4]
Chiang Y. J., Wolak R. A., Transverval biwave maps. SIAM Arch. Math., 46 (3) (2010), 211-226.
[5]
Korzyuka V., Van Vinh N. and Minh N. T., Classical solution of the Cauchy problem for biwave equation: application of Fourier transform. SIAM Math. Model. Anal., 17 (5) (2012), 630-641.
[6]
Feng X., Neilan M., Finite element methods for a bi-wave equation modeling d-wave superconductors. SIAM J. Comput. Math., 28 (3) (2010), 331-353.
[7]
Feng X., Neilan M., Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors. SIAM Math. Comp., 80 (275) (2011), 1303-1333.
[8]
Fushchych W. I., Roman O. V. and Zhdanov R. Z., Symmetry reduction and some exact solutions of nonlinear biwave equations. SIAM Rep. Math. Phys., 37 (2) (1996), 267-281.
[9]
Korzyuk V. I., Cheb E. S., The Cauchy problem for a fourth-order equation with the biwave operator. SIAM Differ. Equ., 43 (5) (2007), 688-695.
[10]
Korzyuk V. I., Konopel’ko O. G. and Cheb E. S., Boundary-value problems for fourth-order equations of hyperbolic and composite types. SIAM J. Math. Sci., 171 (1) (2010), 89-115.
[11]
Evans L. C., Partial Differential Equations. American Mathematical Society, 1998.
[12]
Fang D. Y., Non-linear wave equations. Hang Zhou: Zhejiang University Press, (2008), 95-97.
PDF

Accesses

Citations

Detail

Sections
Recommended

/