Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits

  • Yezi Xiang 1,2 ,
  • Taikui Zhang 1,3 ,
  • Yiyong Zhao 1 ,
  • Hongjin Dong 4 ,
  • Hongyi Chen 4 ,
  • Yi Hu 3 ,
  • Chien-Hsun Huang 1 ,
  • Jun Xiang , 4 ,
  • Hong Ma , 3
Expand
  • 1. State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
  • 2. Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708 NC, USA
  • 3. Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802 PA, USA
  • 4. Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000 China
swxj@hgnu.edu.cn
hxm16@psu.edu

Received date: 15 Dec 2023

Accepted date: 11 Jan 2024

Published date: 20 Feb 2024

Copyright

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

Abstract

Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit “modules” each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.

Cite this article

Yezi Xiang , Taikui Zhang , Yiyong Zhao , Hongjin Dong , Hongyi Chen , Yi Hu , Chien-Hsun Huang , Jun Xiang , Hong Ma . Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits[J]. Journal of Integrative Plant Biology, 2024 , 66(2) : 228 -251 . DOI: 10.1111/jipb.13618

1
Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., and Harmon, L.J. (2009). Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. U.S.A. 106: 13410-13414.

2
APG II (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. 141: 399-436.

3
APG IV (2016). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. 181: 1-20.

4
Areces-Berazain, F., and Ackerman, J.D. (2017). Diversification and fruit evolution in eumalvoids (Malvaceae). Bot. J. Linn. 184: 401-417.

5
Balthazar, M.v, Pedersen, K.R., and Friis, E.M. (2005). Teixeiria lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Plant Syst. Evol. 255: 55-75.

6
Barba-Montoya, J., dos Reis, M., Schneider, H., Donoghue, P.C.J., and Yang, Z. (2018). Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol. 218: 819-834.

7
Beaulieu, J.M., and Donoghue, M.J. (2013). Fruit evolution and diversification in campanulid angiosperms. Evolution 67: 3132-3144.

8
Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.

9
Christenhusz, M.J.M., and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261: 17.

10
Clement, W., and Weiblen, G. (2009). Morphological evolution in the mulberry family (Moraceae). Syst. Bot. 34: 530-552.

11
Di Marzo, M., Babolin, N., Viana, V.E., de Oliveira, A.C., Gugi, B., Caporali, E., Herrera-Ubaldo, H., Martínez-Estrada, E., Driouich, A., de Folter, S., et al. (2022). The genetic control of SEEDSTICK and LEUNIG-HOMOLOG in seed and fruit development: New insights into cell wall control. Plants 11: 3146.

12
Dilcher, D.L., Sun, G., Ji, Q., and Li, H. (2007). An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc. Natl. Acad. Sci. U.S.A. 104: 9370-9374.

13
Dreni, L., and Kater, M.M. (2014). MADS reloaded: Evolution of the AGAMOUS subfamily genes. New Phytol. 201: 717-732.

14
Ebersberger, I., Strauss, S., and von Haeseler, A. (2009). HaMStR: Profile hidden markov model based search for orthologs in ESTs. BMC Evol. Biol. 9: 157.

15
Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.

16
Endress, P.K., and Doyle, J.A. (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64: 1093-1116.

17
Eriksson, O., Friis, E.M., and Löfgren, P. (2000a). Seed size, fruit size, and dispersal systems in angiosperms from the early Cretaceous to the late Tertiary. Am. Nat. 156: 47-58.

18
Eriksson, O., Friis, E.M., Pedersen, K.R., and Crane, P.R. (2000b). Seed size and dispersal systems of early Cretaceous angiosperms from Famalicão, Portugal. Int. J. Plant Sci. 161: 319-329.

19
Falcón, W., Moll, D., and Hansen, D.M. (2020). Frugivory and seed dispersal by chelonians: A review and synthesis. Biol. Rev. Camb. Philos. Soc. 95: 142-166.

20
Ferrandiz, C. (2011). Fruit structure and diversity. In Encyclopedia of life sciences. (Chichester, UK: John Wiley & Sons Ltd), pp. 1-7.

21
Fernandez, L., Chaïb, J., Martinez-Zapater, J.-M., Thomas, M.R., and Torregrosa, L. (2013). Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J. 73: 918-928.

22
Finn, R.D., Clements, J., and Eddy, S.R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39: W29-W37.

23
Friis, E.M., Pedersen, K.R., and Crane, P.R. (2010). Diversity in obscurity: Fossil flowers and the early history of angiosperms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365: 369-382.

24
Frohlich, M.W. (2006). Recent developments regarding the evolutionary origin of flowers. In Advances in Botanical Research (Cambridge, MA: Academic Press), pp. 63-127.

25
Guo, C., Luo, Y., Gao, L.-M., Yi, T.-S., Li, H.-T., Yang, J.-B., and Li, D.-Z. (2022). Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65: 299-323.

26
Guo, J., Xu, W., Hu, Y., Huang, J., Zhao, Y., Zhang, L., Huang, C.-H., and Ma, H. (2020). Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol. Plant 13: 1117-1133.

27
Huang, C.-H., Sun, R., Hu, Y., Zeng, L., Zhang, N., Cai, L., Zhang, Q., Koch, M.A., Al-Shehbaz, I., Edger, P.P., et al. (2016a). Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 33: 394-412.

28
Huang, C.-H., Zhang, C., Liu, M., Hu, Y., Gao, T., Qi, J., and Ma, H. (2016b). Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33: 2820-2835.

29
Huang, J., Xu, W., Zhai, J., Hu, Y., Guo, J., Zhang, C., Zhao, Y., Zhang, L., Martine, C., Ma, H., and Huang, C.-H. (2023) Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. Plant Commun. 4: 100595.

30
Huang, W., Zhang, L., Columbus, J.T., Hu, Y., Zhao, Y., Tang, L., Guo, Z., Chen, W., McKain, M., Bartlett, M., et al. (2022). A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Mol. Plant 15: 755-777.

31
Jaillon, O., Aury, J.-M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., and Jubin, C. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.

32
Jiao, Y., Wickett, N.J., Ayyampalayam, S., Chanderbali, A.S., Landherr, L., Ralph, P.E., Tomsho, L.P., Hu, Y., Liang, H., Soltis, P.S., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97.

33
Jin, D., Wei, H.-J., Shang, H., Shen, H., Shu, J.-P., Liu, L., Zhang, R., Zhou, X.-L., Gu, Y.-F., Yan, Y.-H., et al. (2017). Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. Gigascience 7: gix116.

34
Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772-780.

35
Krassilov, V.A., Shilin, P.V., and Vachrameev, V.A. (1983). Cretaceous flowers from Kazakhstan. Rev. Palaeobot. Palynol. 40: 91-113.

36
Kriventseva, E.V., Simão, F.A., Klioutchnikov, G., Seppey, M., Manni, M., Ioannidis, P., Waterhouse, R.M., and Zdobnov, E.M. (2017). BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35: 543-548.

37
Landis, J.B., Soltis, D.E., Li, Z., Marx, H.E., Barker, M.S., Tank, D.C., and Soltis, P.S. (2018). Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105: 348-363.

38
Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., Graham, S.W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., et al. (2019). One Thousand Plant Transcriptomes and the phylogenomics of green plants. Nature 574: 679-685.

39
Leng, Q., and Friis, E.M. (2006). Angiosperm leaves associated with Sinocarpus infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. Plant Syst. Evol. 262: 173-187.

40
Leng, Q., and Friis, E.M. (2003). Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst. Evol. 241: 77-88.

41
Li, H., Huang, C.-H., and Ma, H. (2019a). Whole-genome duplications in pear and apple. In The Pear Genome, S.S. Korban, ed. (Switzerland AG: Springer Nature), pp. 279-315.

42
Li, H.-T., Yi, T.-S., Gao, L.-M., Ma, P.-F., Zhang, T., Yang, J.-B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., et al. (2019b). Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5: 461-470.

43
Li, K.-T. (2012). Physiology and classification of fruits. In Handbook of Fruits and Fruit Processing, N.K. Sinha, J.S. Sidhu, J. Barta, J.S.B. Wu, M.P. Cano, eds. (Chichester, UK: John Wiley & Sons Ltd), pp. 1-12.

44
Li, Z., De La Torre, A.R., Sterck, L., Cánovas, F.M., Avila, C., Merino, I., Cabezas, J.A., Cervera, M.T., Ingvarsson, P.K., and Van de Peer, Y. (2017). Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol. Evol. 9: 1130-1147.

45
Liu, Z., Ma, H., Jung, S., Main, D., and Guo, L. (2020). Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annu. Rev. Plant Biol. 71: 547-573.

46
Lorts, C.M., Briggeman, T., and Sang, T. (2008). Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot. J. Syst. Evol. 4: 396-404.

47
Lyson, T.R., Miller, I.M., Bercovici, A.D., Weissenburger, K., Fuentes, A.J., Clyde, W.C., Hagadorn, J.W., Butrim, M.J., Johnson, K.R., Fleming, R.F., et al. (2019). Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science 366: 977-983.

48
Mack, A.L. (2000). Did fleshy fruit pulp evolve as a defence against seed loss rather than as a dispersal mechanism? J. Biosci. 25: 93-97.

49
Maddison, W.P., and Maddison, D.R. (2004). Mesquite: A modular system for evolutionary analysis. Evolution 62: 1103-1118.

50
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L.L., and Hernández-Hernández, T. (2015). A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207: 437-453.

51
Mauseth, J.D. (2003). Flowers and reproduction. In Botany Learning, (Boston, MA: Jones & Bartlett), pp. 211-240.

52
Mirarab, S., Nguyen, N., Guo, S., Wang, L.S., Kim, J., and Warnow, T. (2015). PASTA: Ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22: 377-386.

53
Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., and Warnow, T. (2014). ASTRAL: Genome-scale coalescent-based species tree estimation. Bioinformatics 30: i541-i548.

54
Moore, M.J., Bell, C.D., Soltis, P.S., and Soltis, D.E. (2007). Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104: 19363-19368.

55
Moore, M.J., Soltis, P.S., Bell, C.D., Burleigh, J.G., and Soltis, D.E. (2010). Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. U.S.A. 107: 4623-4628.

56
Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274.

57
Pabón-Mora, N., Ambrose, B.A., and Litt, A. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 158: 1685-1704.

58
Pfannebecker, K.C., Lange, M., Rupp, O., and Becker, A. (2016). An evolutionary framework for carpel developmental control genes. Mol. Biol. Evol. 34: 330-348.

59
Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E., and Yanofsky, M.F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88.

60
Qin, L., Hu, Y., Wang, J., Wang, X., Zhao, R., Shan, H., Li, K., Xu, P., Wu, H., Yan, X., et al. (2021). Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat. Plants 7: 1239-1253.

61
Qiu, Y.-L., Li, L., Wang, B., Xue, J.-Y., Hendry, T.A., Li, R.-Q., Brown, J.W., Liu, Y., Hudson, G.T., and Chen, Z.-D. (2010). Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J. Syst. Evol. 48: 391-425.

62
Roth, I. (1977). Fruits of angiosperms. (New York, NY: Springer Publisher).

63
Schultz, J.C., Edger, P.P., Body, M.J.A., and Appel, H.M. (2019). A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9: 1833.

64
Schupp, E.W., Zwolak, R., Jones, L.R., Snell, R.S., Beckman, N.G., Aslan, C., Cavazos, B.R., Effiom, E., Fricke, E.C., Montaño-Centellas, F., et al. (2019). Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AoB Plants 11: plz067.

65
Seymour, G.B., Østergaard, L., Chapman, N.H., Knapp, S., and Martin, C. (2013). Fruit development and ripening. Annu. Rev. Plant Biol. 64: 219-241.

66
Seymour, G.B., Ryder, C.D., Cevik, V., Hammond, J.P., Popovich, A., King, G.J., Vrebalov, J., Giovannoni, J.J., and Manning, K. (2010). A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue. J. Exp. Bot. 62: 1179-1188.

67
Smith, S.A., Beaulieu, J.M., and Donoghue, M.J. (2010). An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl. Acad. Sci. U.S.A. 107: 5897-5902.

68
Smith, S.A., and O'Meara, B.C. (2012). treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689-2690.

69
Soltis, D.E., Albert, V.A., Leebens-Mack, J., Bell, C.D., Paterson, A.H., Zheng, C., Sankoff, D., Depamphilis, C.W., Wall, P.K., and Soltis, P.S. (2009). Polyploidy and angiosperm diversification. Am. J. Bot. 96: 336-348.

70
Soltis, D.E., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C., Brockington, S.F., Refulio-Rodriguez, N.F., Walker, J.B., Moore, M.J., Carlsward, B.S., et al. (2011). Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98: 704-730.

71
Soltis, P.S., and Soltis, D.E. (2004). The origin and diversification of angiosperms. Am. J. Bot. 91: 1614-1626.

72
Soltis, P.S., and Soltis, D.E. (2016). Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant. Biol. 30: 159-165.

73
Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

74
Sun, G., Dilcher, D.L., Zheng, S., and Zhou, Z. (1998). In search of the first flower: A jurassic angiosperm, archaefructus, from Northeast China. Science 282: 1692-1695.

75
Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C., and Wang, X. (2002). Archaefructaceae, a new basal angiosperm family. Science 296: 899-904.

76
Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34: W609-W612.

77
Takeda, S., Hirano, T., Ohshima, I., and Sato, M.H. (2021). Recent progress regarding the molecular aspects of insect gall formation. Int. J. Mol. Sci. 22: 9424.

78
Tang, H., Bowers, J.E., Wang, X., and Paterson, A.H. (2010). Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc. Natl. Acad. Sci. U.S.A. 107: 472-477.

79
Tiffney, B.H. (1986). Evolution of Seed Dispersal Syndromes According to the Fossil Record. In Seed Dispersal, D.R. Murray, ed. (San Diego: Academic Press), pp. 273-305.

80
Tiffney, B.H. (2004). Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evol. Syst. 35: 1-29.

81
Valenta, K., Nevo, O., and Schleuning, M. (2020). The dispersal syndrome hypothesis: How animals shaped fruit traits, and how they did not. Funct. Ecol. 34: 1158-1169.

82
Valido, A., Schaefer, H.M., and Jordano, P. (2011). Colour, design and reward: Phenotypic integration of fleshy fruit displays. J. Evol. Biol. 24: 751-760.

83
Van de Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18: 411.

84
Vanneste, K., Baele, G., Maere, S., and Van de Peer, Y. (2014). Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24: 1334-1347.

85
Veizer, J., Godderis, Y., and François, L.M. (2000). Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408: 698-701.

86
Walden, N., German, D.A., Wolf, E.M., Kiefer, M., Rigault, P., Huang, X.C., Kiefer, C., Schmickl, R., Franzke, A., Neuffer, B., et al. (2020). Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11: 3795.

87
Whitney, K.D. (2009). Comparative evolution of flower and fruit morphology. Proc. R. Soc. B Biol. Sci. 276: 2941-2947.

88
Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M.S., Burleigh, J.G., Gitzendanner, M.A., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111: E4859-E4868.

89
Wong, G.K., Soltis, D.E., Leebens-Mack, J., Wickett, N.J., Barker, M.S., Van de Peer, Y., Graham, S.W., and Melkonian, M. (2020). Sequencing and analyzing the transcriptomes of a thousand species across the tree of life for green plants. Annu. Rev. Plant Biol. 71: 741-765.

90
Wu, S., Han, B., and Jiao, Y. (2020). Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol. Plant 13: 59-71.

91
Wu, Y.C., Rasmussen, M.D., Bansal, M.S., and Kellis, M. (2013). TreeFix: Statistically informed gene tree error correction using species trees. Syst. Biol. 62: 110-120.

92
Xiang, Y., Huang, C.-H., Hu, Y., Wen, J., Li, S., Yi, T., Chen, H., Xiang, J., and Ma, H. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34: 262-281.

93
Yang, L., Su, D., Chang, X., Foster, C.S.P., Sun, L., Huang, C.-H., Zhou, X., Zeng, L., Ma, H., and Zhong, B. (2020). Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling. Plant Commun. 1: 100027.

94
Yang, Y., Moore, M.J., Brockington, S.F., Soltis, D.E., Gane Ka-Shu, W., Carpenter, E.J., Yong, Z., Li, C., Zhixiang, Y., Yinlong, X., et al. (2015). Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol. Biol. Evol. 32: 2001-2014.

95
Yao, J.-L., Kang, C., Gu, C., and Gleave, A.P. (2022). The roles of floral organ genes in regulating Rosaceae fruit development. Front. Plant Sci. 12: 644424.

96
Zachos, J.C., Dickens, G.R., and Zeebe, R.E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279-283.

97
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O'Meara, B.C., Moles, A.T., Reich, P.B., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89.

98
Zeng, L., Zhang, N., Zhang, Q., Endress, P.K., Huang, J., and Ma, H. (2017). Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214: 1338-1354.

99
Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N., and Ma, H. (2014). Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5: 4956.

100
Zhang, C., Huang, C.H., Liu, M., Hu, Y., Panero, J.L., Luebert, F., Gao, T., and Ma, H. (2021). Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J. Integr. Plant Biol. 63: 1273-1293.

101
Zhang, C., Zhang, T., Luebert, F., Xiang, Y., Huang, C.-H., Hu, Y., Rees, M., Frohlich, M.W., Qi, J., Weigend, M., et al. (2020). Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole genome duplications. Mol. Biol. Evol. 37: 3188-3210.

102
Zhang, G., Hu, Y., Huang, M.Z., Huang, W.C., Liu, D.K., Zhang, D., Hu, H., Downing, J.L., Liu, Z.J., and Ma, H. (2023). Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. J. Integr. Plant Biol. 65: 1204-1225.

103
Zhang, G., and Ma, H. (2024). Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. J. Integr. Plant Biol.

DOI

104
Zhang, N., Zeng, L., Shan, H., and Ma, H. (2012). Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195: 923-937.

105
Zhang, T., Liu, C., Huang, X., Zhang, H., and Yuan, Z. (2019). Land-plant phylogenomic and pomegranate transcriptomic analyses reveal an evolutionary scenario of CYP75 genes subsequent to whole genome duplications. J. Plant Biol. 62: 48-60.

106
Zhao, L., Li, X., Zhang, N., Zhang, S.-D., Yi, T.-S., Ma, H., Guo, Z.-H., and Li, D.-Z. (2016). Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol. Phylogenet. Evol. 105: 166-176.

107
Zhao, T., Zwaenepoel, A., Xue, J.Y., Kao, S.M., Li, Z., Schranz, M.E., and Van de Peer, Y. (2021). Whole-genome microsynteny-based phylogeny of angiosperms. Nat. Commun. 12: 3498.

Options
Outlines

/