Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome

Lei Liang , Yuancong Wang , Yanbin Han , Yicong Chen , Mengfei Li , Yibo Wu , Zeyang Ma , Han Zhao , Rentao Song

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 645 -659.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 645 -659. DOI: 10.1111/jipb.13637
New Resources

Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome

Author information +
History +
PDF

Abstract

ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.

Keywords

ChinaMu / Mutator / MuT-seq / PPR gene / Zea mays

Cite this article

Download citation ▾
Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao, Rentao Song. Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome. Journal of Integrative Plant Biology, 2024, 66(4): 645-659 DOI:10.1111/jipb.13637

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adey, A., Morrison, H.G., Asan , Xun, X., Kitzman, J.O., Turner, E.H., Stackhouse, B., Mackenzie, A.P., Caruccio, N.C., Zhang, X., et al. (2010). Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11: R119.

[2]

Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65: 415-442.

[3]

Baubec, T., Pecinka, A., Rozhon, W., and Mittelsten Scheid, O. (2009). Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J. 57: 542-554.

[4]

Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., and Dekker, J. (2012). Hi-C: A comprehensive technique to capture the conformation of genomes. Methods 58: 268-276.

[5]

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: Architecture and applications. BMC Bioinform. 10: 421.

[6]

Cardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S.E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., et al. (2023). CRISPR/Cas-mediated plant genome editing: Outstanding challenges a decade after implementation. Trends Plant Sci. 28: 1144-1165.

[7]

Chen, J., Lu, L., Benjamin, J., Diaz, S., Hancock, C.N., Stajich, J.E., and Wessler, S.R. (2019). Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice. Nat. Commun. 10: 641.

[8]

Chen, J., Wang, Z., Tan, K., Huang, W., Shi, J., Li, T., Hu, J., Wang, K., Wang, C., Xin, B., et al. (2023). A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55: 1221-1231.

[9]

Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18: 170-175.

[10]

Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al. (2021). Twelve years of SAMtools and BCFtools. Gigascience 10: giab008.

[11]

Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3: 99-101.

[12]

Gao, X., Mo, W., Shi, J., Song, N., Liang, P., Chen, J., Shi, Y., Guo, W., Li, X., Yang, X., et al. (2021). HITAC-seq enables high-throughput cost-effective sequencing of plasmids and DNA fragments with identity-tracked. J. Genet. Genomics 48: 671.

[13]

Goel, M., Sun, H., Jiao, W.B., and Schneeberger, K. (2019). SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20: 277.

[14]

Gordon, S.P., Contreras-Moreira, B., Woods, D.P., Des Marais, D.L., Burgess, D., Shu, S., Stritt, C., Roulin, A.C., Schackwitz, W., Tyler, L., et al. (2017). Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8: 2184.

[15]

Hirsch, C.N., Foerster, J.M., Johnson, J.M., Sekhon, R.S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M.A., Barry, K., et al. (2014). Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 26: 121-135.

[16]

Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., et al. (2021). De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373: 655-662.

[17]

Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al. (2017). Improved maize reference genome with single-molecule technologies. Nature 546: 524-527.

[18]

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.

[19]

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics.

[20]

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100.

[21]

Liang, L., Zhou, L., Tang, Y., Li, N., Song, T., Shao, W., Zhang, Z., Cai, P., Feng, F., Ma, Y., et al. (2019). A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol. 181: 1404-1414.

[22]

Lisch, D., Chomet, P., and Freeling, M. (1995). Genetic characterization of the Mutator system in maize: Behavior and regulation of Mu transposons in a minimal line. Genetics 139: 1777-1796.

[23]

Long, J.C., Xia, A.A., Liu, J.H., Jing, J.L., Wang, Y.Z., Qi, C.Y., and He, Y. (2019). Decrease in DNA methylation 1 (DDM1) is required for the formation of (m) CHH islands in maize. J. Integr. Plant Biol. 61: 749-764.

[24]

Lu, L., Chen, J., Robb, S.M.C., Okumoto, Y., Stajich, J.E., and Wessler, S.R. (2017). Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl. Acad. Sci. U.S.A. 114: E10550-E10559.

[25]

Lyu, M., Liu, H., Waititu, J.K., Sun, Y., Wang, H., Fu, J., Chen, Y., Liu, J., Ku, L., and Cheng, X. (2021). TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize. J. Genet. Genomics 48: 961-971.

[26]

Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., and Zdobnov, E.M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38: 4647-4654.

[27]

Marcon, C., Altrogge, L., Win, Y.N., Stocker, T., Gardiner, J.M., Portwood, J.L., Opitz, N., Kortz, A., Baldauf, J.A., Hunter, C.T., et al. (2020). BonnMu: A sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184: 620-631.

[28]

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17: 10.

[29]

May, B.P., Liu, H., Vollbrecht, E., Senior, L., Rabinowicz, P.D., Roh, D., Pan, X., Stein, L., Freeling, M., Alexander, D., et al. (2003). Maize-targeted mutagenesis: A knockout resource for maize. Proc. Natl. Acad. Sci. U.S.A. 100: 11541-11546.

[30]

Mccarty, D.R., Latshaw, S., Wu, S., Suzuki, M., Hunter, C.T., Avigne, W.T., and Koch, K.E. (2013). Mu-seq: Sequence-based mapping and identification of transposon induced mutations. PLoS ONE 8: e77172.

[31]

McCarty, D.R., Settles, A.M., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., et al. (2005). Steady-state transposon mutagenesis in inbred maize. Plant J. 44: 52-61.

[32]

O'Malley, R.C., and Ecker, J.R. (2010). Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61: 928-940.

[33]

Ou, S., Chen, J., and Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46: e126.

[34]

Pendleton, M., Sebra, R., Pang, A.W., Ummat, A., Franzen, O., Rausch, T., Stutz, A.M., Stedman, W., Anantharaman, T., Hastie, A., et al. (2015). Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12: 780-786.

[35]

Picelli, S., Björklund, Å.K., Reinius, B., Sagasser, S., Winberg, G., and Sandberg, R. (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24: 2033-2040.

[36]

Settles, A.M., Latshaw, S., and McCarty, D.R. (2004). Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res. 32: e54.

[37]

Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11: e0163962.

[38]

Silong, S., Yingsi, Z., Jian, C., Junpeng, S., Haiming, Z., Hainan, Z., Weibin, S., Mei, Z., Yang, C., Xiaomei, D., et al. (2018). Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50: 1289-1295.

[39]

Springer, N.M., Anderson, S.N., Andorf, C.M., Ahern, K.R., Bai, F., Barad, O., Barbazuk, W.B., Bass, H.W., Baruch, K., Ben-Zvi, G., et al. (2018). The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50: 1282-1288.

[40]

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38: e164.

[41]

Wang, N., Long, T., Yao, W., Xiong, L., Zhang, Q., and Wu, C. (2013). Mutant resources for the functional analysis of the rice genome. Mol. Plant 6: 596-604.

[42]

Williams-Carrier, R., Stiffler, N., Belcher, S., Kroeger, T., Stern, D.B., Monde, R.-A., Coalter, R., and Barkan, A. (2010). Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J. 63: 167-177.

[43]

Woodhouse, M.R., Cannon, E.K., Portwood, J.L., Harper, L.C., Gardiner, J.M., Schaeffer, M.L., and Andorf, C.M. (2021). A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biol. 21: 385.

[44]

Xiao, C.L., Chen, Y., Xie, S.Q., Chen, K.N., Wang, Y., Han, Y., Luo, F., and Xie, Z. (2017). MECAT: Fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14: 1072-1074.

[45]

Xu, M., Guo, L., Gu, S., Wang, O., Zhang, R., Peters, B.A., Fan, G., Liu, X., Xu, X., Deng, L., et al. (2020). TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9: giaa094.

[46]

Zhang, X., Zhang, S., Zhao, Q., Ming, R., and Tang, H. (2019). Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5: 833-845.

[47]

Zhang, X., Zhao, M., McCarty, D.R., and Lisch, D. (2020). Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Res. 48: 6685-6698.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

290

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/