The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.)

Guangjing Ma , Zhihao Liu , Shurui Song , Jing Gao , Shujie Liao , Shilong Cao , Yan Xie , Liwen Cao , Longxing Hu , Haichun Jing , Liang Chen

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2346 -2361.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2346 -2361. DOI: 10.1111/jipb.13789
Research Article

The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.)

Author information +
History +
PDF

Abstract

Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore,LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.

Keywords

haplotype / heat shock transcription factors / heat tolerance / perennial ryegrass

Cite this article

Download citation ▾
Guangjing Ma, Zhihao Liu, Shurui Song, Jing Gao, Shujie Liao, Shilong Cao, Yan Xie, Liwen Cao, Longxing Hu, Haichun Jing, Liang Chen. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). Journal of Integrative Plant Biology, 2024, 66(11): 2346-2361 DOI:10.1111/jipb.13789

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahloowalia, B.S. (1977). Hybrids between tetraploid Italian and perennial ryegrass. Theor. Appl. Genet. 49:229–235.

[2]

Apel, K., and Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373–399.

[3]

Bakery, A.,Vraggalas, S.,Shalha, B.,Chauchan, H.,Benhamed, M., and Fragkostefanakis, S. (2024). Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytol. 244:51–64.

[4]

Byrne, S. L.,Nagy, I.,Pfeifer, M.,Armstead, I.,Swain, S.,Studer, B.,Mayer, K.,Campbell, J. D.,Czaban, A.,Hentrup, S., et al. (2015). A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. 84:816–826.

[5]

Chan-Schaminet, K.Y.,Baniwal, S.K.,Bublak, D.,Nover, L., and Scharf, K.D. (2009). Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J. Biol. Chem. 284:20848–20857.

[6]

Charng, Y.Y.,Liu, H.C.,Liu, N.Y.,Chi, W.T.,Wang, C.N.,Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143:251–262.

[7]

Chen, Z.,Galli, M., and Gallavotti, A. (2022). Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol. 65:102134.

[8]

Driedonks, N.,Xu, J.,Peters, J.L.,Park, S., and Rieu, I. (2015). Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci. 6:999.

[9]

Frei, D.,Veekman, E.,Grogg, D.,Stoffel-Studer, I.,Morishima, A.,Shimizu-Inatsugi, R.,Yates, S.,Shimizu, K. K.,Frey, J. E.,Studer, B., et al. (2021). Ultralong Oxford nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biol Evol. 13: evab159.

[10]

Gong, Z.,Xiong, L.,Shi, H.,Yang, S.,Herrera-Estrella, L.R.,Xu, G.,Chao, D.Y.,Li, J.,Wang, P.Y.,Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63:635–674.

[11]

Hahn, A.,Bublak, D.,Schleiff, E., and Scharf, K.D. (2011). Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755.

[12]

Hasanuzzaman, M.,Nahar, K.,Alam, M.M.,Roychowdhury, R., and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14:9643–9684.

[13]

Jaspers, P., and Kangasjarvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiol. Plant. 138:405–413.

[14]

Kan, Y.,Mu, X.R.,Zhang, H.,Gao, J.,Shan, J.X.,Ye, W.W., and Lin, H.X. (2022). TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat. Plants 8:53–67.

[15]

von Koskull-Doring, P.,Scharf, K.D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends Plant Sci. 12:452–457.

[16]

Li, J.Y.,Yang, C.,Xu, J.,Lu, H.P., and Liu, J.X. (2023). The hot science in rice research: How rice plants cope with heat stress. Plant Cell Environ. 46:1087–1103.

[17]

Li, S.J.,Liu, S.C.,Lin, X.H.,Grierson, D.,Yin, X.R., and Chen, K.S. (2022). Citrus heat shock transcription factor CitHsfA7-mediated citric acid degradation in response to heat stress. Plant Cell Environ. 45:95–104.

[18]

Li, Z.,Li, Z.,Ji, Y.,Wang, C.,Wang, S.,Shi, Y.,Le, J., and Zhang, M. (2024). The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. Plant Cell 36:2652–2667.

[19]

Ling, Y.,Mahfouz, M.M., and Zhou, S. (2021). Pre-mRNA alternative splicing as a modulator for heat stress response in plants. Trends Plant Sci. 26:1153–1170.

[20]

Liu, H.C., and Charng, Y.Y. (2013). Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol. 163:276–290.

[21]

Liu, H.C.,Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34:738–751.

[22]

Liu, X.,Chen, H.,Li, S.,Lecourieux, D.,Duan, W.,Fan, P.,Liang, Z., and Wang, L. (2023). Natural variations of HSFA2 enhance thermotolerance in grapevine. Hortic. Res. 10: uhac250.

[23]

Liu, Y.,Zhang, C.,Chen, J.,Guo, L.,Li, X.,Li, W.,Yu, Z.,Deng, J.,Zhang, P.,Zhang, K., et al. (2013). Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol. Biochem. 64:92–98.

[24]

Ma, G.,Zhang, M.,Xu, J.,Zhou, W., and Cao, L. (2020). Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin. Ecotoxicol. Environ. Saf. 202:110877.

[25]

Ma, G.J.,Shen, J.,Yu, H.,Huang, X.B.,Deng, X.L.,Hu, Z.R.,Amee, M.,Chen, L., and Cao, L.W. (2022). Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environ. Exp. Bot. 201:104968.

[26]

Meng, G.,Jin-Hong, L.,Xiao, M.,De-Xu, L.,Zhen-Hui, G., and Ming-Hui, L. (2016). The plant heat stress transcription factors HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 7:114.

[27]

Nishizawa-Yokoi, A.,Nosaka, R.,Hayashi, H.,Tainaka, H.,Maruta, T.,Tamoi, M.,Ikeda, M.,Ohme-Takagi, M.,Yoshimura, K.,Yabuta, Y., et al. (2011). HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52:933–945.

[28]

Nover, L.,Bharti, K.,Doring, P.,Mishra, S.K.,Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189.

[29]

Nover, L.,Scharf, K.D.,Gagliardi, D.,Vergne, P.,Czarnecka-Verner, E., and Gurley, W.B. (1996). The Hsf world: Classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1:215–223.

[30]

Ogawa, D.,Yamaguchi, K., and Nishiuchi, T. (2007). High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58:3373–3383.

[31]

Ohama, N.,Sato, H.,Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22:53–65.

[32]

Qu, A.L.,Ding, Y.F.,Jiang, Q., and Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432:203–207.

[33]

Rolland, V. (2018). Determining the subcellular localization of fluorescently tagged proteins using protoplasts extracted from transiently transformed Nicotiana benthamiana leaves. Methods Mol. Biol. 1770:263–283.

[34]

Scharf, K.D.,Heider, H.,Hohfeld, I.,Lyck, R.,Schmidt, E., and Nover, L. (1998). The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol. 18:2240–2251.

[35]

Scharf, K.D.,Rose, S.,Zott, W.,Schoffl, F., and Nover, L. (1990). Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495–4501.

[36]

Schramm, F.,Ganguli, A.,Kiehlmann, E.,Englich, G.,Walch, D., and von Koskull-Doring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 60:759–772.

[37]

Shekhawat, K.,Almeida-Trapp, M.,Garcia-Ramirez, G.X., and Hirt, H. (2022). Beat the heat: Plant-and microbe-mediated strategies for crop thermotolerance. Trends Plant Sci. 27:802–813.

[38]

Song, Q.,He, F.,Kong, L.,Yang, J.,Wang, X.,Zhao, Z.,Zhang, Y.,Xu, C.,Fan, C., and Luo, K. (2024). The IAA17.1/HSFA5a module enhances salt tolerance in Populus tomentosa by regulating flavonol biosynthesis and ROS levels in lateral roots. New Phytol. 241:592–606.

[39]

Sun, T.,Shao, K.,Huang, Y.,Lei, Y.,Tan, L., and Chan, Z. (2020). Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environ. Exp. Bot. 179:104192.

[40]

Sun, T.,Wang, W.,Hu, X.,Fang, Z.,Wang, Y.,Xiang, L., and Chan, Z. (2022). Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response. Physiol. Plant. 174: e13828.

[41]

Sun, W.,Van Montagu, M., and Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577:1–9.

[42]

Sung, D.Y., and Guy, C.L. (2003). Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol. 132:979–987.

[43]

Taleb, M.H.,Majidi, M.M.,Pirnajmedin, F., and Maibody, S. (2023). Plant functional trait responses to cope with drought in seven cool-season grasses. Sci. Rep. 13:5285.

[44]

Vanderauwera, S.,Suzuki, N.,Miller, G.,van de Cotte, B.,Morsa, S.,Ravanat, J.L.,Hegie, A.,Triantaphylides, C.,Shulaev, V.,Van Montagu, M.C., et al. (2011). Extranuclear protection of chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 108:1711–1716.

[45]

Wang, J.,Xu, J.,Wang, L.,Zhou, M.,Nian, J.,Chen, M.,Lu, X.,Liu, X.,Wang, Z.,Cen, J., et al. (2023). SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice Oryza sativa (L.). Plant Biotechnol. J. 21:819–838.

[46]

Wang, L.,Guo, D.,Zhao, G.,Wang, J.,Zhang, S.,Wang, C., and Guo, X. (2022). Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. New Phytol. 236:249–265.

[47]

Wang, X.,Huang, W.,Liu, J.,Yang, Z., and Huang, B. (2017a). Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnol. J. 15:237–248.

[48]

Wang, X.,Zhuang, L.,Shi, Y., and Huang, B. (2017b). Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. Int. J. Mol. Sci. 18:1981.

[49]

Yang, J.,Qu, X.,Li, T.,Gao, Y.,Du, H.,Zheng, L.,Ji, M.,Zhang, P.,Zhang, Y.,Hu, J., et al. (2023a). HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis. J. Integr. Plant Biol. 65:45–63.

[50]

Yang, Z.,Cao, Y.,Shi, Y.,Qin, F.,Jiang, C., and Yang, S. (2023b). Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant 16:1496–1517.

[51]

Yu, T.,Bai, Y.,Liu, Z.,Wang, Z.,Yang, Q.,Wu, T.,Feng, S.,Zhang, Y.,Shen, S.,Li, Q., et al. (2022). Large-scale analyses of heat shock transcription factors and database construction based on whole-genome genes in horticultural and representative plants. Hortic. Res. 9: uhac035.

[52]

Zhang, H.,Zhou, J.F.,Kan, Y.,Shan, J.X.,Ye, W.W.,Dong, N.Q.,Guo, T.,Xiang, Y.H.,Yang, Y.B.,Li, Y.C., et al. (2022a). A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376:1293–1300.

[53]

Zhang, R.,Liu, G.,Xu, H.,Lou, H.,Zhai, S.,Chen, A.,Hao, S.,Xing, J.,Liu, J.,You, M., et al. (2022b). Heat Stress Tolerance 2 confers basal heat stress tolerance in allohexaploid wheat Triticum aestivum (L.). J. Exp. Bot. 73:6600–6614.

[54]

Zhang, W.J.,Dewey, R.E.,Boss, W.,Phillippy, B.Q., and Qu, R. (2013). Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol. Biol. 81:273–286.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/