The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants

Mengjie Zhao , Shijie Huang , Qingyang Zhang , Yuming Wei , Zhen Tao , Chuanhong Wang , Yibing Zhao , Xinqiao Zhang , Jinghui Dong , Ling Wang , Chen Chen , Tengyue Wang , Peijin Li

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2528 -2542.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2528 -2542. DOI: 10.1111/jipb.13763
Research Article

The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants

Author information +
History +
PDF

Abstract

During their co-evolution with herbivorous insects, plants have developed multiple defense strategies that resist pests, such as releasing a blend of herbivory-induced plant volatiles (HIPVs) that repel pests or recruit their natural enemies. However, the responses of insects to HIPVs in maize (Zea mays L.) are not well understood. Here, we demonstrate that the Asian corn borer (ACB,Ostrinia furnacalis), a major insect pest of maize, shows a preference for maize pre-infested with ACB larvae rather than being repelled by these plants. Through combined transcriptomic and metabolomics analysis of ACB-infested maize seedlings, we identified two substances that explain this behavior: (E)-4, 8-dimethylnona-1, 3, 7-triene (DMNT) and (3E, 7E)-4, 8, 12-trimethyltrideca-1, 3, 7, 11-tetraene (TMTT). DMNT and TMTT attracted ACB larvae, and knocking out the maize genes responsible for their biosynthesis via gene editing impaired this attraction. External supplementation with DMNT/TMTT hampered the larvae's ability to locate pre-infested maize. These findings uncover a novel role for DMNT and TMTT in driving the behavior of ACB. Genetic modification of maize to make it less detectable by ACB might be an effective strategy for developing maize germplasm resistant to ACB and for managing this pest effectively in the field.

Keywords

Asian corn borer / DMNT / HIPVs / maize / TMTT

Cite this article

Download citation ▾
Mengjie Zhao, Shijie Huang, Qingyang Zhang, Yuming Wei, Zhen Tao, Chuanhong Wang, Yibing Zhao, Xinqiao Zhang, Jinghui Dong, Ling Wang, Chen Chen, Tengyue Wang, Peijin Li. The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants. Journal of Integrative Plant Biology, 2024, 66(11): 2528-2542 DOI:10.1111/jipb.13763

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bi, H.,Merchant, A.,Gu, J.,Li, X.,Zhou, X., and Zhang, Q. (2022). CRISPR/Cas9-Mediated mutagenesis of abdominal-A and ultrabithorax in the Asian corn borer,Ostrinia furnacalis. Insects 13:384.

[2]

Bleeker, P.M.,Mirabella, R.,Diergaarde, P.J.,VanDoorn, A.,Tissier, A.,Kant, M.R.,Prins, M.,de Vos, M.,Haring, M.A., and Schuurink, R.C. (2012). Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci. U.S.A. 109:20124–20129.

[3]

de Boer, J.G.,Posthumus, M.A., and Dicke, M. (2004). Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J. Chem. Ecol. 30:2215–2230.

[4]

Box, M.S.,Coustham, V.,Dean, C., and Mylne, J.S. (2011). Protocol: A simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis. Plant Methods 7:7.

[5]

Chen, C.,Chen, H.,Huang, S.,Jiang, T.,Wang, C.,Tao, Z.,He, C.,Tang, Q., and Li, P. (2021). Volatile DMNT directly protects plants against Plutella xylostella by disrupting the peritrophic matrix barrier in insect midgut. eLife 10: e63938.

[6]

Chen, H.,Chen, C.,Huang, S.,Zhao, M.,Wang, T.,Jiang, T.,Wang, C.,Tao, Z.,Zhang, Y.,Wang, Y., et al. (2023). Inactivation of RPX1 in Arabidopsis confers resistance to Plutella xylostella through the accumulation of the homoterpene DMNT. Plant Cell Environ. 46:946–961.

[7]

Christianson, D.W. (2017). Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117:11570–11648.

[8]

Conart, C.,Bomzan, D.P.,Huang, X.-Q.,Bassard, J.-E.,Paramita, S.N.,Saint-Marcoux, D.,Rius-Bony, A.,Hivert, G.,Anchisi, A.,Schaller, H., et al. (2023). A cytosolic bifunctional geranyl/farnesyl diphosphate synthase provides MVA-derived GPP for geraniol biosynthesis in rose flowers. Proc. Natl. Acad. Sci. U.S.A. 120: e2221440120.

[9]

Cusumano, A.,Harvey, J.A.,Dicke, M., and Poelman, E.H. (2019). Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia 189:699–709.

[10]

Erb, M.,Veyrat, N.,Robert, C.A.,Xu, H.,Frey, M.,Ton, J., and Turlings, T.C. (2015). Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 6:6273.

[11]

Escobar-Bravo, R.,Lin, P.-A.,Waterman, J.M., and Erb, M. (2023). Dynamic environmental interactions shaped by vegetative plant volatiles. Nat. Prod. Rep. 40:840–865.

[12]

Frey, M.,Spiteller, D.,Boland, W., and Gierl, A. (2004). Transcriptional activation of Igl, the gene for indole formation in Zea mays: A structure–activity study with elicitor-active N-acyl glutamines from insects. Phytochemistry 65:1047–1055.

[13]

Gasmi, L.,Martinez-Solis, M.,Frattini, A.,Ye, M.,Collado, M.C.,Turlings, T.C.J.,Erb, M., and Herrero, S. (2019). Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? Appl. Environ. Microbiol. 85: e01468–01418.

[14]

Ghosh, E., and Venkatesan, R. (2019). Plant volatiles modulate immune responses of Spodoptera litura. J. Chem. Ecol. 45:715–724.

[15]

Guo, H., and Wang, C.-Z. (2019). The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod Plant Interact. 13:161–179.

[16]

Guo, J.,Qi, J.,He, K.,Wu, J.,Bai, S.,Zhang, T.,Zhao, J., and Wang, Z. (2019). The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Plant Biotechnol. J. 17:88–102.

[17]

Hu, L.,Ye, M., and Erb, M. (2019). Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant Cell Environ. 42:959–971.

[18]

Hu, L.,Zhang, K.,Wu, Z.,Xu, J., and Erb, M. (2021). Plant volatiles as regulators of plant defense and herbivore immunity: Molecular mechanisms and unanswered questions. Curr. Opin. Insect. Sci. 44:82–88.

[19]

Huang, H.-J., and Yang, W.-B. (2007). Synthesis of moenocinol and its analogs using BT-sulfone in Julia-Kocienski olefination. Tetrahedron Lett. 48:1429–1433.

[20]

Hutchison, W.D.,Burkness, E.C.,Mitchell, P.D.,Moon, R.D.,Leslie, T.W.,Fleischer, S.J.,Abrahamson, M.,Hamilton, K.L.,Steffey, K.L.,Gray, M.E., et al. (2010). Areawide suppression of european corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225.

[21]

Irmisch, S.,Clavijo McCormick, A.,Gunther, J.,Schmidt, A.,Boeckler, G.A.,Gershenzon, J.,Unsicker, S.B., and Kollner, T.G. (2014). Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J. 80:1095–1107.

[22]

Ishihara, K.,Ishibashi, H., and Yamamoto, H. (2002). Enantio-and diastereoselective Stepwise cyclization of polyprenoids induced by chiral and achiral LBAs. A new entry to (–)-Ambrox, (+)-Podocarpa-8, 11, 13-triene Diterpenoids, and (–)-Tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc. 124:3647–3655.

[23]

Ji, R.,Ye, W.,Chen, H.,Zeng, J.,Li, H.,Yu, H.,Li, J., and Lou, Y. (2017). A salivary Endo-β-1, 4-Glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol. 173:1920–1932.

[24]

Jing, T.,Du, W.,Gao, T.,Wu, Y.,Zhang, N.,Zhao, M.,Jin, J.,Wang, J.,Schwab, W.,Wan, X., et al. (2021). Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell Environ. 44:1178–1191.

[25]

Kang, K.,Yue, L.,Xia, X.,Liu, K., and Zhang, W. (2019). Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics 15:62.

[26]

Kappers, I.F.,Aharoni, A.,van Herpen, T.W.J.M.,Luckerhoff, L.L.P.,Dicke, M., and Bouwmeester, H.J. (2005). Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072.

[27]

Liao, Y.,Smyth, G.K., and Shi, W. (2013). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930.

[28]

Liu, D.,Huang, X.,Jing, W.,An, X.,Zhang, Q.,Zhang, H.,Zhou, J.,Zhang, Y., and Guo, Y. (2017). Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynthesis. Plant Biotechnol. J. 16:581–590.

[29]

Liu, Q.,Wang, X.,Tzin, V.,Romeis, J.,Peng, Y., and Li, Y. (2016). Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC Plant Biol. 16:259.

[30]

Liu, Y.,Han, S.,Yang, S.,Chen, Z.,Yin, Y.,Xi, J.,Liu, Q.,Yan, W.,Song, X.,Zhao, F., et al. (2022). Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Sci. Rep. 12:12529.

[31]

Love, M.I.,Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 15:550.

[32]

Mafu, S.,Ding, Y.,Murphy, K.M.,Yaacoobi, O.,Addison, J.B.,Wang, Q.,Shen, Z.,Briggs, S.P.,Bohlmann, J.,Castro-Falcon, G., et al. (2018). Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol. 176:2677–2690.

[33]

Meents, A.K.,Chen, S.P.,Reichelt, M.,Lu, H.H.,Bartram, S.,Yeh, K.W., and Mithofer, A. (2019). Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Sci. Rep. 9:17431.

[34]

Mitchell, C.,Brennan, R.M.,Graham, J., and Karley, A.J. (2016). Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 7:1132.

[35]

Nagegowda, D.A., and Gupta, P. (2020). Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 294:110457.

[36]

Ohlen, M.v,Herfurth, A.-M.,Kerbstadt, H., and Wittstock, U. (2016). Cyanide detoxification in an insect herbivore: Molecular identification of β-cyanoalanine synthases from Pieris rapae. Insect. Biochem. Mol. Biol. 70:99–110.

[37]

Paudel Timilsena, B.,Seidl-Adams, I., and Tumlinson, J.H. (2020). Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses. Plant Cell Environ. 43:787–800.

[38]

Qi, W.,Zhu, T.,Tian, Z.,Li, C.,Zhang, W., and Song, R. (2016). High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol. 16:58.

[39]

Richter, A.,Schaff, C.,Zhang, Z.,Lipka, A.E.,Tian, F.,Kollner, T.G.,Schnee, C.,Preiss, S.,Irmisch, S.,Jander, G., et al. (2016). Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell 28:2651–2665.

[40]

Robinson, M.D.,McCarthy, D.J., and Smyth, G.K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.

[41]

Røstelien, T.,Stranden, M.,Borg-Karlson, A.K., and Mustaparta, H. (2005). Olfactory receptor neurons in two Heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem. Senses 30:443–461.

[42]

Skoczek, A.,Piesik, D.,Wenda-Piesik, A.,Buszewski, B.,Bocianowski, J., and Wawrzyniak, M. (2017). Volatile organic compounds released by maize following herbivory or insect extract application and communication between plants. J. Appl. Entomol. 141:630–643.

[43]

Sugimoto, K.,Matsui, K.,Iijima, Y.,Akakabe, Y.,Muramoto, S.,Ozawa, R.,Uefune, M.,Sasaki, R.,Alamgir, K.M.,Akitake, S., et al. (2014). Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc. Natl. Acad. Sci. U.S.A. 111:7144–7149.

[44]

Tamiru, A.,Bruce, T.J.A.,Midega, C.A.O.,Woodcock, C.M.,Birkett, M.A.,Pickett, J.A., and Khan, Z.R. (2012). Oviposition induced volatile emissions from African smallholder farmers’ maize varieties. J. Chem. Ecol. 38:231–234.

[45]

Tefera, T. (2012). Post-harvest losses in African maize in the face of increasing food shortage. Food Secur. 4:267–277.

[46]

Thaler, J.S.,Stout, M.J.,Karban, R., and Duffey, S.S. (1996). Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22:1767–1781.

[47]

Turlings, T.C.J.,Tumlinson, J.H., and Lewis, W.J. (1990). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

[48]

Varet, H.,Brillet-Guéguen, L.,Coppée, J.-Y., and Dillies, M.-A. (2016). SARTools: A DESeq. 2-and EdgeR-Based R ripeline for comprehensive differential analysis of RNA-seq data. PLoS ONE 11: e0157022.

[49]

Wang, T.,Wang, K.,Wang, C.,Zhao, Y.,Tao, Z.,Li, J.,Wang, L.,Shi, J.,Huang, S.,Xie, C., et al. (2023). Combining quantitative trait locus mapping with multiomics profiling reveals genetic control of corn leaf aphid (Rhopalosiphum maidis) resistance in maize. J. Exp. Bot. 74:3749–3764.

[50]

Wang, Y.,Tao, Z.,Wang, W.,Filiault, D.,Qiu, C.,Wang, C.,Wang, H.,Rehman, S.,Shi, J.,Zhang, Y., et al. (2020). Molecular variation in a functionally divergent homolog of FCA regulates flowering time in Arabidopsis thaliana. Nat. Commun. 11:5830.

[51]

Wei, Y.,Zhang, J.,Li, T.,Zhao, M.,Song, Z.,Wang, Y., and Ning, J. (2024). GC–MS, GC–O, and sensomics analysis reveals the key odorants underlying the improvement of yellow tea aroma after optimized yellowing. Food Chem. 431:137139.

[52]

Xie, X.,Ma, X.,Zhu, Q.,Zeng, D.,Li, G., and Liu, Y.G. (2017). CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10:1246–1249.

[53]

Xu, T.,Xu, M.,Lu, Y.,Zhang, W.,Sun, J.,Zeng, R.,Turlings, T.C.J., and Chen, L. (2021). A trail pheromone mediates the mutualism between ants and aphids. Curr. Biol. 31:4738–4747.

[54]

Yang, N.,Liu, J.,Gao, Q.,Gui, S.,Chen, L.,Yang, L.,Huang, J.,Deng, T.,Luo, J.,He, L., et al. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51:1052–1059.

[55]

Ye, M.,Veyrat, N.,Xu, H.,Hu, L.,Turlings, T.C.J., and Erb, M. (2018). An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars. Sci. Adv. 4: eaar4767.

[56]

Yin, C.,Li, M.,Hu, J.,Lang, K.,Chen, Q.,Liu, J.,Guo, D.,He, K.,Dong, Y.,Luo, J., et al. (2018). The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 19:420.

[57]

Yong, T.-H., and Hoffmann, M.P. (2006). Habitat selection by the introduced biological control agent trichogramma ostriniae (Hymenoptera: Trichogrammatidae) and implications for nontarget effects. Environ. Entomol. 35:725–732.

[58]

Yue, Z.,Li, X.,Zhang, E.,Liu, X., and Zhao, Z. (2017). A potential and novel type transgenic corn plant for control of the Corn Borer. Sci. Rep. 7:44105.

[59]

Zahn, L.M. (2009). Adding Oregano to Corn. Science 325:1048.

[60]

Zhang, L.,Chen, J.,Zhou, X.,Chen, X.,Li, Q.,Tan, H.,Dong, X.,Xiao, Y.,Chen, L., and Chen, W. (2016). Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort. Plant Biotechnol. J. 14:2217–2227.

[61]

Zhao, M.,Tao, Z.,Wang, L.,Wang, T.,Wang, C.,Li, S.,Huang, S.,Wei, Y.,Jiang, T., and Li, P. (2023). Structural modification of (3E)-4, 8-dimethyl-1, 3, 7-nontriene enhances its ability to kill Plutella xylostella insect pests. Pest. Manag. Sci. 79:3280–3289.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

310

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/