SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato

Hyewon Cho , Dain Seo , Minsoo Kim , Bo Eun Nam , Soyoun Ahn , Minju Kang , Geul Bang , Choon-Tak Kwon , Youngsung Joo , Eunkyoo Oh

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2273 -2287.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2273 -2287. DOI: 10.1111/jipb.13747
Research Article

SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato

Author information +
History +
PDF

Abstract

Systemin, the first peptide hormone identified in plants, was initially isolated from tomato (Solanum lycopersicum) leaves. Systemin mediates local and systemic wound-induced defense responses in plants, conferring resistance to necrotrophic fungi and herbivorous insects. Systemin is recognized by the leucine-rich-repeat receptor-like kinase (LRR-RLK) receptor SYSTEMIN RECEPTOR1 (SYR1), but how the systemin recognition signal is transduced to intracellular signaling pathways to trigger defense responses is poorly understood. Here, we demonstrate that SERK family LRR-RLKs function as co-receptors for SYR1 to mediate systemin signal transduction in tomato. By using chemical genetic approaches coupled with engineered receptors, we revealed that the association of the cytoplasmic kinase domains of SYR1 with SERKs leads to their mutual trans-phosphorylation and the activation of SYR1, which in turn induces a wide range of defense responses. Systemin stimulates the association between SYR1 and all tomato SERKs (SlSERK1, SlSERK3A, and SlSERK3B). The resulting SYR1-SlSERK heteromeric complexes trigger the phosphorylation of TOMATO PROTEIN KINASE 1B (TPK1b), a receptor-like cytoplasmic kinase that positively regulates systemin responses. Additionally, upon association with SYR1, SlSERKs are cleaved by the Pseudomonas syringae effector HopB1, further supporting the finding that SlSERKs are activated by systemin-bound SYR1. Finally, genetic analysis using Slserk mutants showed that SlSERKs are essential for systemin-mediated defense responses. Collectively, these findings demonstrate that the systemin-mediated association of SYR1 and SlSERKs activates defense responses against herbivorous insects.

Keywords

LRR-RLK / peptide / SERK / SYR1 / systemin

Cite this article

Download citation ▾
Hyewon Cho, Dain Seo, Minsoo Kim, Bo Eun Nam, Soyoun Ahn, Minju Kang, Geul Bang, Choon-Tak Kwon, Youngsung Joo, Eunkyoo Oh. SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato. Journal of Integrative Plant Biology, 2024, 66(10): 2273-2287 DOI:10.1111/jipb.13747

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbuQamar, S.,Chai, M.F.,Luo, H.L.,Song, F.M., and Mengiste, T. (2008). Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20: 1964-1983.

[2]

Beloshistov, R.E.,Dreizler, K.,Galiullina, R.A.,Tuzhikov, A.I.,Serebryakova, M.V.,Reichardt, S.,Shaw, J.,Taliansky, M.E.,Pfannstiel, J.,Chichkova, N.V., et al. (2018). Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytol. 218: 1167-1178.

[3]

Bender, K.W.,Couto, D.,Kadota, Y.,Macho, A.P.,Sklenar, J.,Derbyshire, P.,Bjornson, M.,DeFalco, T.A.,Petriello, A.,Font Farre, M., et al. (2021). Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proc. Natl. Acad. Sci. U. S. A. 118: e2108242118.

[4]

Bi, G.Z.,Zhou, Z.Y.,Wang, W.B.,Li, L.,Rao, S.F.,Wu, Y.,Zhang, X.J.,Menke, F.L.H.,Chen, S., and Zhou, J.M. (2018). Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30: 1543-1561.

[5]

Branon, T.C.,Bosch, J.A.,Sanchez, A.D.,Udeshi, N.D.,Svinkina, T.,Carr, S.A.,Feldman, J.L.,Perrimon, N., and Ting, A.Y. (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36: 880-887.

[6]

Cheng, Y.H.,Zhang, Y.K., and McCammon, J.A. (2005). How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: An ab initio QM/MM study. J. Am. Chem. Soc. 127: 1553-1562.

[7]

Chinchilla, D.,Zipfel, C.,Robatzek, S.,Kemmerling, B.,Nurnberger, T.,Jones, J.D.G.,Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-U412.

[8]

Engler, C.,Youles, M.,Gruetzner, R.,Ehnert, T.M.,Werner, S.,Jones, J.D.,Patron, N.J., and Marillonnet, S. (2014). A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 3: 839-843.

[9]

Escocard de Azevedo Manhaes, A.M.,Ortiz-Morea, F.A.,He, P., and Shan, L. (2021). Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. J. Integr. Plant Biol. 63: 79-101.

[10]

Gomez-Gomez, L., and Boller, T. (2000). FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011.

[11]

He, K.,Gou, X.,Yuan, T.,Lin, H.,Asami, T.,Yoshida, S.,Russell, S.D., and Li, J. (2007). BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol. 17: 1109-1115.

[12]

Heese, A.,Hann, D.R.,Gimenez-Ibanez, S.,Jones, A.M.,He, K.,Li, J.,Schroeder, J.I.,Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U. S. A. 104: 12217-12222.

[13]

Hohmann, U.,Lau, K., and Hothorn, M. (2017). The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68: 109-137.

[14]

Holton, N.,Cano-Delgado, A.,Harrison, K.,Montoya, T.,Chory, J., and Bishop, G.J. (2007). Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19: 1709-1717.

[15]

Hou, S.,Liu, Z.,Shen, H., and Wu, D. (2019). Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10: 646.

[16]

Kadota, Y.,Sklenar, J.,Derbyshire, P.,Stransfeld, L.,Asai, S.,Ntoukakis, V.,Jones, J.D.G.,Shirasu, K.,Menke, F.,Jones, A., et al. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54: 43-55.

[17]

Kim, S.,Park, J.,Jeon, B.W.,Hwang, G.,Kang, N.Y.,We, Y.,Park, W.Y.,Oh, E., and Kim, J. (2021). Chemical control of receptor kinase signaling by rapamycin-induced dimerization. Mol. Plant 14: 1379-1390.

[18]

Kim, T.W.,Park, C.H.,Hsu, C.C.,Kim, Y.W.,Ko, Y.W.,Zhang, Z.Z.,Zhu, J.Y.,Hsiao, Y.C.,Branon, T.,Kaasik, K., et al. (2023). Mapping the signaling network of BIN2 kinase using TurboID-mediated biotin labeling and phosphoproteomics. Plant Cell 35: 975-993.

[19]

Kwon, C.T.,Heo, J.,Lemmon, Z.H.,Capua, Y.,Hutton, S.F.,Van Eck, J.,Park, S.J., and Lippman, Z.B. (2020). Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38: 182-188.

[20]

Lanfermeijer, F.C.,Staal, M.,Malinowski, R.,Stratmann, J.W., and Elzenga, J.T.M. (2008). Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. Plant Physiol. 146: 129-139.

[21]

Li, J.,Wen, J.,Lease, K.A.,Doke, J.T.,Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213-222.

[22]

Li, L.,Kim, P.,Yu, L.P.,Cai, G.H.,Chen, S.,Alfano, J.R., and Zhou, J.M. (2016). Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 20: 504-514.

[23]

Lori, M.,van Verk, M.C.,Hander, T.,Schatowitz, H.,Klauser, D.,Flury, P.,Gehring, C.A.,Boller, T., and Bartels, S. (2015). Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: Interfamily incompatibility of perception but compatibility of downstream signalling. J. Exp. Bot. 66: 5315-5325.

[24]

Lu, D.,Wu, S.,Gao, X.,Zhang, Y.,Shan, L., and He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. U. S. A. 107: 496-501.

[25]

Luo, X.,Wu, W.,Liang, Y.,Xu, N.,Wang, Z.,Zou, H., and Liu, J. (2020). Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity. EMBO J. 39: e102856.

[26]

Ma, X.,Xu, G.,He, P., and Shan, L. (2016). SERKing coreceptors for receptors. Trends Plant Sci. 21: 1017-1033.

[27]

Macho, A.P.,Schwessinger, B.,Ntoukakis, V.,Brutus, A.,Segonzac, C.,Roy, S.,Kadota, Y.,Oh, M.H.,Sklenar, J., and Derbyshire, P. (2014). A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343: 1509-1512.

[28]

Malinowski, R.,Higgins, R.,Luo, Y.,Piper, L.,Nazir, A.,Bajwa, V.S.,Clouse, S.D.,Thompson, P.R., and Stratmann, J.W. (2009). The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Mol. Biol. 70: 603-616.

[29]

McGurl, B.,Pearce, G.,Orozcocardenas, M., and Ryan, C.A. (1992). Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255: 1570-1573.

[30]

Ni, W.,Xu, S.L.,Tepperman, J.M.,Stanley, D.J.,Maltby, D.A.,Gross, J.D.,Burlingame, A.L.,Wang, Z.Y., and Quail, P.H. (2014). A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344: 1160-1164.

[31]

Oh, Y.,Lee, B.,Kim, H., and Kim, S.G. (2020). A multiplex guide RNA expression system and its efficacy for plant genome engineering. Plant Methods 16: 37.

[32]

Pearce, G.,Strydom, D.,Johnson, S., and Ryan, C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase-inhibitor proteins. Science 253: 895-898.

[33]

Peng, H.C., and Kaloshian, I. (2014). The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. PLoS One 9: e93302.

[34]

Postel, S.,Kufner, I.,Beuter, C.,Mazzotta, S.,Schwedt, A.,Borlotti, A.,Halter, T.,Kemmerling, B., and Nurnberger, T. (2010). The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur. J. Cell Biol. 89: 169-174.

[35]

Rao, S.F.,Zhou, Z.Y.,Miao, P.,Bi, G.Z.,Hu, M.,Wu, Y.,Feng, F.,Zhang, X.J., and Zhou, J.M. (2018). Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling. Plant Physiol. 177: 1679-1690.

[36]

Roux, M.,Schwessinger, B.,Albrecht, C.,Chinchilla, D.,Jones, A.,Holton, N.,Malinovsky, F.G.,Tor, M.,de Vries, S., and Zipfel, C. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440-2455.

[37]

Ryan, C.A., and Pearce, G. (2003). Systemins: A functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100: 14577-14580.

[38]

Scheer, J.M., and Ryan, C.A. (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. U. S. A. 99: 9585-9590.

[39]

Seo, D.,Park, J.,Park, J.,Hwang, G.,Seo, P.J., and Oh, E. (2023). ZTL regulates thermomorphogenesis through TOC1 and PRR5. Plant Cell Environ. 46: 1442-1452.

[40]

Sun, H.J.,Uchii, S.,Watanabe, S., and Ezura, H. (2006). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47: 426-431.

[41]

Tang, J.,Han, Z.,Sun, Y.,Zhang, H.,Gong, X., and Chai, J. (2015). Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res. 25: 110-120.

[42]

Tian, W.,Hou, C.C.,Ren, Z.J.,Wang, C.,Zhao, F.G.,Dahlbeck, D.,Hu, S.P.,Zhang, L.Y.,Niu, Q.,Li, L.G. et al. (2019). A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572: 131-135.

[43]

Wang, L.,Albert, M.,Einig, E.,Furst, U.,Krust, D., and Felix, G. (2016). The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat. Plants 2: 16185.

[44]

Wang, L.,Einig, E.,Almeida-Trapp, M.,Albert, M.,Fliegmann, J.,Mithofer, A.,Kalbacher, H., and Felix, G. (2018). The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat. Plants 4: 152-156.

[45]

Xu, S.M.,Liao, C.J.,Jaiswal, N.,Lee, S.,Yun, D.J.,Lee, S.Y.,Garvey, M.,Kaplan, I., and Mengiste, T. (2018). Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 regulates responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell 30: 2214-2229.

[46]

Yamada, K.,Yamashita-Yamada, M.,Hirase, T.,Fujiwara, T.,Tsuda, K.,Hiruma, K., and Saijo, Y. (2016). Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. EMBO J. 35: 46-61.

[47]

Yamaguchi, Y.,Huffaker, A.,Bryan, A.C.,Tax, F.E., and Ryan, C.A. (2010). PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22: 508-522.

[48]

Yamaguchi, Y.,Pearce, G., and Ryan, C.A. (2006). The cell surface leucine-rich repeat receptor for AtPep1, an endoaenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. U. S. A. 103: 10104-10109.

[49]

Yang, W.,Zhai, H.,Wu, F.,Deng, L.,Chao, Y.,Meng, X.,Chen, Q.,Liu, C.,Bie, X.,Sun, C., et al. (2024). Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187: 3024-3038.

[50]

Yu, X.,Xie, Y.P.,Luo, D.X.,Liu, H.,de Oliveira, M.V.V.,Qi, P.P.,Kim, S.I.,Ortiz-Morea, F.A.,Liu, J.,Chen, Y.F., et al. (2023). A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity. Cell 186: 2329-2344.

[51]

Zhang, H.Y., and Hu, Y.Y. (2017). Long-distance transport of prosystemin messenger RNA in tomato. Front. Plant Sci. 8: 1894.

[52]

Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol. Plant 3: 783-793.

[53]

Zhang, Y.,Yin, Z.,Pi, L.,Wang, N.,Wang, J.,Peng, H., and Dou, D. (2023). A Nicotiana benthamiana receptor-like kinase regulates Phytophthora resistance by coupling with BAK1 to enhance elicitin-triggered immunity. J. Integr. Plant Biol. 65: 1553-1565.

[54]

Zhou, J.G.,Wang, P.,Claus, L.A.N.,Savatin, D.V.,Xu, G.Y.,Wu, S.J.,Meng, X.Z.,Russinova, E.,He, P., and Shan, L.B. (2019). Proteolytic processing of SERK3/BAK1 regulates plant immunity, development, and cell death. Plant Physiol. 180: 543-558.

[55]

Zipfel, C.,Kunze, G.,Chinchilla, D.,Caniard, A.,Jones, J.D.G.,Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/