Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement

Fan Xu , Guiming Li , Shengyang He , Zhifeng Zeng , Qiaoling Wang , Hongju Zhang , Xingying Yan , Yulin Hu , Huidan Tian , Ming Luo

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1898 -1914.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1898 -1914. DOI: 10.1002/jipb.13740
Research Article

Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement

Author information +
History +
PDF

Abstract

Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.

Keywords

cotton fiber / membrane sphingolipid / microtubule arrangement

Cite this article

Download citation ▾
Fan Xu, Guiming Li, Shengyang He, Zhifeng Zeng, Qiaoling Wang, Hongju Zhang, Xingying Yan, Yulin Hu, Huidan Tian, Ming Luo. Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement. Journal of Integrative Plant Biology, 2024, 66(9): 1898-1914 DOI:10.1002/jipb.13740

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Breslow, D.K., and Weissman, J.S. (2010). Membranes in balance: Mechanisms of sphingolipid homeostasis. Mol. Cell 40:267–279.

[2]

Cacas, J.L.,Bure, C.,Grosjean, K.,Gerbeau-Pissot, P.,Lherminier, J.,Rombouts, Y.,Maes, E.,Bossard, C.,Gronnier, J.,Furt, F., et al. (2016). Revisiting plant plasma membrane lipids in tobacco: A focus on sphingolipids. Plant Physiol. 170:367–384.

[3]

Chen, Q.,Xu, F.,Wang, L.,Suo, X.,Wang, Q.,Meng, Q.,Huang, L.,Ma, C.,Li, G., and Luo, M. (2021). Sphingolipid profile during cotton fiber growth revealed that a phytoceramide containing hydroxylated and saturated VLCFA is important for fiber cell elongation. Biomolecules 11:1352.

[4]

Chen, Z.,Wu, Z.X.,Dong, W.Y.,Liu, S.Y.,Tian, L.L.,Li, J.N., and Du, H. (2022). MYB transcription factors becoming mainstream in plant roots. Int. J. Mol. Sci. 23:9262.

[5]

Cheng, Y.,Lu, L.,Yang, Z.,Wu, Z.,Qin, W.,Yu, D.,Ren, Z.,Li, Y.,Wang, L.,Li, F., et al. (2016). GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production. Plant Physiol. Biochem. 109:128–136.

[6]

Deng, F.,Tu, L.,Tan, J.,Li, Y.,Nie, Y., and Zhang, X. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol. 158:890–904.

[7]

Deng, S.S.,Wei, T.,Tan, K.L.,Hu, M.Y.,Li, F.,Zhai, Y.L.,Ye, S.,Xiao, Y.H.,Hou, L.,Pei, Y., et al. (2016). Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: Role of phytosterols in cell elongation. Sci. China: Life Sci. 59:183–193.

[8]

Goldy, C., and Caillaud, M.C. (2023). Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. Curr. Opin. Plant Biol. 73:102365.

[9]

Gomann, J.,Herrfurth, C.,Zienkiewicz, A.,Ischebeck, T.,Haslam, T.M.,Hornung, E., and Feussner, I. (2021). Sphingolipid long-chain base hydroxylation influences plant growth and callose deposition in physcomitrium patens. New Phytol. 231:297–314.

[10]

Guan, X.Y.,Pang, M.X.,Nah, G.,Shi, X.L.,Ye, W.X.,Stelly, D.M., and Chen, Z.J. (2014). miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5:3050.

[11]

Haigler, C.H.,Betancur, L.,Stiff, M.R., and Tuttle, J.R. (2012). Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 3:104.

[12]

Hamant, O.,Inoue, D.,Bouchez, D.,Dumais, J., and Mjolsness, E. (2019). Are microtubules tension sensors? Nat. Commun. 10:2360.

[13]

Han, L.B.,Li, Y.B.,Wang, H.Y.,Wu, X.M.,Li, C.L.,Luo, M.,Wu, S.J.,Kong, Z.S.,Pei, Y.,Jiao, G.L., et al. (2013). The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25:4421–4438.

[14]

Haslam, T.M., and Feussner, I. (2022). Diversity in sphingolipid metabolism across land plants. J. Exp. Bot. 73:2785–2798.

[15]

Hu, H.,He, X.,Tu, L.,Zhu, L.,Zhu, S.,Ge, Z., and Zhang, X. (2016). GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J. 88:921–935.

[16]

Huang, G.,Huang, J.Q.,Chen, X.Y., and Zhu, Y.X. (2021a). Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 72:437–462.

[17]

Huang, J.,Chen, F.,Guo, Y.,Gan, X.,Yang, M.,Zeng, W.,Persson, S.,Li, J., and Xu, W. (2021b). GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. New Phytol. 232:1718–1737.

[18]

Huang, J.F.,Chen, F.,Wu, S.Y.,Li, J., and Xu, W.L. (2016). Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci. China: Life Sci. 59:194–205.

[19]

Huang, J.F.,Guo, Y.J.,Sun, Q.W.,Zeng, W.,Li, J.,Li, X.B., and Xu, W.L. (2019). Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol. 60:687–701.

[20]

Huang, Y.Q.,Liu, X.,Tang, K.X., and Zuo, K.J. (2013). Functional analysis of the seed coat-specific gene GbMYB2 from cotton. Plant Physiol. Bioch. 73:16–22.

[21]

Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639:292–298.

[22]

Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Rep. 5:387–405.

[23]

Kong, Z.S.,Ioki, M.,Braybrook, S.,Li, S.D.,Ye, Z.H.,Lee, Y.R.J.,Hotta, T.,Chang, A.,Tian, J.,Wang, G.D., et al. (2015). Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol. Plant 8:1011–1023.

[24]

Koshino-Kimura, Y.,Wada, T.,Tachibana, T.,Tsugeki, R.,Ishiguro, S., and Okada, K. (2005). Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol. 46:817–826.

[25]

Kumar, S.,Stecher, G., and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874.

[26]

Lee, H.,Guo, Y.,Ohta, M.,Xiong, L.M.,Stevenson, B., and Zhu, J.K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 21:2692–2702.

[27]

Lee, M.M., and Schiefelbein, J. (2002). Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618.

[28]

Li, G.,Wang, Q.,Meng, Q.,Wang, G.,Xu, F.,Chen, Q.,Liu, F.,Hu, Y., and Luo, M. (2022). Overexpression of a ceramide synthase gene, GhCS1, inhibits fiber cell initiation and elongation by promoting the synthesis of ceramides containing dihydroxy LCB and VLCFA. Front. Plant Sci. 13:1000348.

[29]

Lian, N.,Wang, X.,Jing, Y., and Lin, J. (2021). Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. J. Integr. Plant Biol. 63:241–250.

[30]

Liu, N.J.,Hou, L.P.,Bao, J.J.,Wang, L.J., and Chen, X.Y. (2021). Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. Plant Commun. 2:100214.

[31]

Liu, W.C.,Song, R.F.,Qiu, Y.M.,Zheng, S.Q.,Li, T.T.,Wu, Y.,Song, C.P.,Lu, Y.T., and Yuan, H.M. (2022). Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis. Dev. Cell 57:1883–1898.e5.

[32]

Liu, Z.H.,Chen, Y.,Wang, N.N.,Chen, Y.H.,Wei, N.,Lu, R.,Li, Y., and Li, X.B. (2020). A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol. 225:2439–2452.

[33]

Machado, A.,Wu, Y.R.,Yang, Y.M.,Llewellyn, D.J., and Dennis, E.S. (2009). The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 59:52–62.

[34]

Meng, Q.,Wang, Q.L.,Xu, F.,Chen, Q.,Ma, C.X.,Huang, L.,Li, G.M.,Liu, F., and Luo, M. (2022). Down-regulating a fiber-specific KCR like gene GhKCRL1 suppressed fiber elongation through blocking the synthesis of sphingolipids in fiber cell. Ind. Crop Prod. 186:115290.

[35]

Millard, P.S.,Kragelund, B.B., and Burow, M. (2019). R2R3 MYB transcription factors—Functions outside the DNA-binding domain. Trends Plant Sci. 24:934–946.

[36]

Mu, R.L.,Cao, Y.R.,Liu, Y.F.,Lei, G.,Zou, H.F.,Liao, Y.,Wang, H.W.,Zhang, W.K.,Ma, B.,Du, J.Z., et al. (2009). An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res. 19:1291–1304.

[37]

Niu, Q.,Tan, K.L.,Zang, Z.L.,Xiao, Z.Y.,Chen, K.J.,Hu, M.Y., and Luo, M. (2019). Modification of phytosterol composition influences cotton fiber cell elongation and secondary cell wall deposition. BMC Plant Biol. 19:208.

[38]

Oresic, M. (2011). Informatics and computational strategies for the study of lipids. Biochim. Biophys. Acta 1811:991–999.

[39]

Pratyusha, D.S., and Sarada, D.V.L. (2022). MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 41:2245–2260.

[40]

Pu, L.,Li, Q.,Fan, X.P.,Yang, W.C., and Xue, Y.B. (2008). The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820.

[41]

Qin, Y.M.,Hu, C.Y.,Pang, Y.,Kastaniotis, A.J.,Hiltunen, J.K., and Zhu, Y.X. (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692–3704.

[42]

Qin, Y.M., and Zhu, Y.X. (2011). How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14:106–111.

[43]

Riglet, L.,Rozier, F.,Fobis-Loisy, I., and Gaude, T. (2021). KATANIN and cortical microtubule organization have a pivotal role in early pollen tube guidance. Plant Signal. Behav. 16:1921992.

[44]

Rinehart, J.A.,Petersen, M.W., and John, M.E. (1996). Tissue-specific and developmental regulation of cotton gene FbL2A. Demonstration of promoter activity in transgenic plants. Plant Physiol. 112:1331–1341.

[45]

Sankaranarayanan, S., and Kessler, S.A. (2020). Growing straight through walls. eLife 9:e61647.

[46]

Seagull, R.W. (1990). The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159:44–59.

[47]

Shan, C.M.,Shangguan, X.X.,Zhao, B.,Zhang, X.F.,Chao, L.M.,Yang, C.Q.,Wang, L.J.,Zhu, H.Y.,Zeng, Y.D.,Guo, W.Z., et al. (2014). Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 5:5519.

[48]

Shevchenko, A., and Simons, K. (2010). Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Bio. 11:593–598.

[49]

Sparkes, I.A.,Runions, J.,Kearns, A., and Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1:2019–2025.

[50]

Stiff, M.R., and Haigler, C.H. (2016). Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis. Sci. Rep. 6:27883.

[51]

Sun, W.,Gao, Z.,Wang, J.,Huang, Y.,Chen, Y.,Li, J.,Lv, M.,Wang, J.,Luo, M., and Zuo, K. (2019). Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytol. 222:864–881.

[52]

Suo, J.F.,Liang, X.O.,Pu, L.,Zhang, Y.S., and Xue, Y.B. (2003). Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium Hirsutum L.). Bba-Gene Struct. Expr. 1630:25–34.

[53]

Tang, W.,Lin, W.,Zhou, X.,Guo, J.,Dang, X.,Li, B.,Lin, D., and Yang, Z. (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. 32:508–517 e503.

[54]

Tang, W.,Tu, L.,Yang, X.,Tan, J.,Deng, F.,Hao, J.,Guo, K.,Lindsey, K., and Zhang, X. (2014). The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol. 202:509–520.

[55]

Walford, S.A.,Wu, Y.,Llewellyn, D.J., and Dennis, E.S. (2011). GhMYB25-like: A key factor in early cotton fibre development. Plant J. 65:785–797.

[56]

Wang, L.,Liu, C.,Liu, Y.J., and Luo, M. (2020). Fumonisin B1-induced changes in cotton fiber elongation revealed by sphingolipidomics and proteomics. Biomolecules 10:1258.

[57]

Wang, Q.,Meng, Q.,Xu, F.,Chen, Q.,Ma, C.,Huang, L.,Li, G., and Luo, M. (2021). Comparative metabolomics analysis reveals sterols and sphingolipids play a role in cotton fiber cell initiation. Int. J. Mol. Sci. 22:11438.

[58]

Wang, S.,Wang, J.W.,Yu, N.,Li, C.H.,Luo, B.,Gou, J.Y.,Wang, L.J., and Chen, X.Y. (2004). Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334.

[59]

Wen, X.,Chen, Z.,Yang, Z.,Wang, M.,Jin, S.,Wang, G.,Zhang, L.,Wang, L.,Li, J.,Saeed, S., et al. (2023). A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci. China: Life Sci. 66:2214–2256.

[60]

Xu, F.,Chen, Q.,Huang, L., and Luo, M. (2021). Advances about the roles of membranes in cotton fiber development. Membranes (Basel) 11:471.

[61]

Xu, F.,Huang, L.,Wang, J.,Ma, C.,Tan, Y.,Wang, F.,Fan, Y., and Luo, M. (2022). Sphingolipid synthesis inhibitor fumonisin B1 causes verticillium wilt in cotton. J. Integr. Plant Biol. 64:836–842.

[62]

Xu, F.,Wang, L.,Xu, J.,Chen, Q.,Ma, C.,Huang, L.,Li, G., and Luo, M. (2023). GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling. Crop Journal 11:447–456.

[63]

Yang, Z.,Liu, Z.,Ge, X.,Lu, L.,Qin, W.,Qanmber, G.,Liu, L.,Wang, Z., and Li, F. (2023). Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis. Plant Cell 35:2114–2131.

[64]

Yang, Z.R.,Qanmber, G.,Wang, Z.,Yang, Z.E., and Li, F.G. (2020). Gossypium genomics: Trends, scope, and utilization for cotton improvement. Trends Plant Sci. 25:488–500.

[65]

Yu, R.K.,Bieberich, E.,Xia, T., and Zeng, G.C. (2004). Regulation of ganglioside biosynthesis in the nervous system. J. Lipid Res. 45:783–793.

[66]

Yu, Y.J.,Wu, S.J.,Nowak, J.,Wang, G.D.,Han, L.B.,Feng, Z.D.,Mendrinna, A.,Ma, Y.P.,Wang, H.,Zhang, X.X., et al. (2019). Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nat. Plants 5:498–504.

[67]

Zeng, H.Y.,Li, C.Y., and Yao, N. (2020). Fumonisin B1: A tool for exploring the multiple functions of sphingolipids in plants. Front. Plant Sci. 11:600458.

[68]

Zhang, J.,Huang, G.Q.,Zou, D.,Yan, J.Q.,Li, Y.,Hu, S., and Li, X.B. (2018). The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 217:625–640.

[69]

Zhao, H.,Chen, Y.,Liu, J.,Wang, Z.,Li, F., and Ge, X. (2023). Recent advances and future perspectives in early-maturing cotton research. New Phytol. 237:1100–1114.

[70]

Zhao, M.,Morohashi, K.,Hatlestad, G.,Grotewold, E., and Lloyd, A. (2008). The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/