Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism

Xiaolian Wang , Yanfang Yuan , Laurence Charrier , Zhaoguo Deng , Markus Geisler , Xing Wang Deng , Haodong Chen

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1886 -1897.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1886 -1897. DOI: 10.1002/jipb.13736
Research Article

Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism

Author information +
History +
PDF

Abstract

Light and gravity coordinately regulate the directional growth of plants. Arabidopsis Gravitropic in the Light 1 (GIL1) inhibits the negative gravitropism of hypocotyls in red and far-red light, but the underlying molecular mechanisms remain elusive. Our study found that GIL1 is a plasma membrane-localized protein. In endodermal cells of the upper part of hypocotyls, GIL1 controls the negative gravitropism of hypocotyls. GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3. Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant. The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light. Together, our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3, thereby enhancing the emergence of young seedlings from the soil.

Keywords

GIL1 / gravitropism / hypocotyls / light / PIN3

Cite this article

Download citation ▾
Xiaolian Wang, Yanfang Yuan, Laurence Charrier, Zhaoguo Deng, Markus Geisler, Xing Wang Deng, Haodong Chen. Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism. Journal of Integrative Plant Biology, 2024, 66(9): 1886-1897 DOI:10.1002/jipb.13736

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen, T.,Ingles, P.J.,Praekelt, U.,Smith, H., and Whitelam, G.C. (2006). Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage. Plant J. 46:641–648.

[2]

Barlow, P.W. (1995). Gravity perception in plants: A multiplicity of systems derived by evolution? Plant Cell Environ. 18:951–962.

[3]

Bliss, D.H., and Smith, H. (1985). Penetration of light into soil and its role in the control of seed germination. Plant Cell Environ. 8:475–483.

[4]

Caspar, T., and Pickard, B.G. (1989). Gravitropism in a starchless mutant of Arabidopsis: Implications for the starch-statolith theory of gravity sensing. Planta 177:185–197.

[5]

Chen, H.,Huang, X.,Gusmaroli, G.,Terzaghi, W.,Lau, O.S.,Yanagawa, Y.,Zhang, Y.,Li, J.,Lee, J.H.,Zhu, D., et al. (2010). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22:108–123.

[6]

Chen, J.,Yu, R.,Li, N.,Deng, Z.,Zhang, X.,Zhao, Y.,Qu, C.,Yuan, Y.,Pan, Z.,Zhou, Y., et al. (2023). Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 186:4788–4802.e4715.

[7]

Chin, S., and Blancaflor, E.B. (2022). Plant gravitropism: From mechanistic insights into plant function on earth to plants colonizing other worlds. Methods Mol. Biol. 2368:1–41.

[8]

Clough, S.J., and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743.

[9]

Darwish, E.,Ghosh, R.,Ontiveros-Cisneros, A.,Tran, H.C.,Petersson, M.,De Milde, L.,Broda, M.,Goossens, A.,Van Moerkercke, A.,Khan, K., et al. (2022). Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3-and JA-dependent pathways. Sci. Adv. 8:eabm2091.

[10]

Dong, J.,Tang, D.,Gao, Z.,Yu, R.,Li, K.,He, H.,Terzaghi, W.,Deng, X.W., and Chen, H. (2014). Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell 26:3630–3645.

[11]

Endo, M.,Mochizuki, N.,Suzuki, T., and Nagatani, A. (2007). CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19:84–93.

[12]

Friml, J.,Wisniewska, J.,Benkova, E.,Mendgen, K., and Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809.

[13]

Friml, J.,Yang, X.,Michniewicz, M.,Weijers, D.,Quint, A.,Tietz, O.,Benjamins, R.,Ouwerkerk, P.B.,Ljung, K.,Sandberg, G., et al. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865.

[14]

Henrichs, S.,Wang, B.,Fukao, Y.,Zhu, J.,Charrier, L.,Bailly, A.,Oehring, S.C.,Linnert, M.,Weiwad, M.,Endler, A., et al. (2012). Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 31:2965–2980.

[15]

Huang, G.,Liang, W.,Sturrock, C.J.,Pandey, B.K.,Giri, J.,Mairhofer, S.,Wang, D.,Muller, L.,Tan, H.,York, L.M., et al. (2018). Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat. Commun. 9:2346.

[16]

Huang, L., and Zhang, C. (2020). Perturbation and imaging of exocytosis in plant cells. Methods Cell Biol. 160:3–20.

[17]

Kim, J.,Song, K.,Park, E.,Kim, K.,Bae, G., and Choi, G. (2016). Epidermal phytochrome B inhibits hypocotyl negative gravitropism non-cell-autonomously. Plant Cell 28:2770–2785.

[18]

Kim, K.,Shin, J.,Lee, S.H.,Kweon, H.S.,Maloof, J.N., and Choi, G. (2011). Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A. 108:1729–1734.

[19]

Kiss, J.Z.,Hertel, R., and Sack, F.D. (1989). Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177:198–206.

[20]

Kleine-Vehn, J.,Ding, Z.,Jones, A.R.,Tasaka, M.,Morita, M.T., and Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. U.S.A. 107:22344–22349.

[21]

Lariguet, P., and Fankhauser, C. (2004). Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J. 40:826–834.

[22]

Li, X. (2011). Histostaining for tissue expression pattern of promoter-driven GUS activity in Arabidopsis. Bio-protocol 1:e93.

[23]

Morita, M.T. (2010). Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61:705–720.

[24]

Morita, M.T., and Tasaka, M. (2004). Gravity sensing and signaling. Curr. Opin. Plant Biol. 7:712–718.

[25]

Nagashima, A.,Suzuki, G.,Uehara, Y.,Saji, K.,Furukawa, T.,Koshiba, T.,Sekimoto, M.,Fujioka, S.,Kuroha, T.,Kojima, M., et al. (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J. 53:516–529.

[26]

Nishimura, T.,Mori, S.,Shikata, H.,Nakamura, M.,Hashiguchi, Y.,Abe, Y.,Hagihara, T.,Yoshikawa, H.Y.,Toyota, M.,Higaki, T., et al. (2023). Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 381:1006–1010.

[27]

Osterlund, M.T.,Hardtke, C.S.,Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466.

[28]

Poppe, C.,Hangarter, R.P.,Sharrock, R.A.,Nagy, F., and Schäfer, E. (1996). The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B. Planta 199:511–514.

[29]

Rakusová H.,Abbas, M.,Han, H.,Song, S.,Robert, H.S., and Friml, J. (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 26:3026–3032.

[30]

Rakusová H.,Gallego-Bartolomé J.,Vanstraelen, M.,Robert, H.S.,Alabadí D.,Blázquez, M.A.,Benková E., and Friml, J. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J. 67:817–826.

[31]

Robson, P.R., and Smith, H. (1996). Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls. Plant Physiol. 110:211–216.

[32]

Roppolo, D.,De Rybel, B.,Dénervaud Tendon, V.,Pfister, A.,Alassimone, J.,Vermeer, J.E.,Yamazaki, M.,Stierhof, Y.D.,Beeckman, T., and Geldner, N. (2011). A novel protein family mediates Casparian strip formation in the endodermis. Nature 473:380–383.

[33]

Roychoudhry, S.,Sageman-Furnas, K.,Wolverton, C.,Grones, P.,Tan, S.,Molnár, G.,De Angelis, M.,Goodman, H.L.,Capstaff, N.,Lloyd, J.P.B., et al. (2023). Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nat. Plants 9:1500–1513.

[34]

Schepens, I.,Boccalandro, H.E.,Kami, C.,Casal, J.J., and Fankhauser, C. (2008). PHYTOCHROME KINASE SUBSTRATE4 modulates phytochrome-mediated control of hypocotyl growth orientation. Plant Physiol. 147:661–671.

[35]

Serino, G.,Tsuge, T.,Kwok, S.,Matsui, M.,Wei, N., and Deng, X.W. (1999). Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell 11:1967–1980.

[36]

Shin, J.,Kim, K.,Kang, H.,Zulfugarov, I.S.,Bae, G.,Lee, C.H.,Lee, D., and Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A. 106:7660–7665.

[37]

Su, S.H.,Gibbs, N.M.,Jancewicz, A.L., and Masson, P.H. (2017). Molecular mechanisms of root gravitropism. Curr. Biol. 27:R964–R972.

[38]

Sun, N.,Wang, J.,Gao, Z.,Dong, J.,He, H.,Terzaghi, W.,Wei, N.,Deng, X.W., and Chen, H. (2016). Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proc. Natl. Acad. Sci. U.S.A. 113:6071–6076.

[39]

Tasaka, M.,Kato, T., and Fukaki, H. (1999). The endodermis and shoot gravitropism. Trends Plant Sci. 4:103–107.

[40]

Uga, Y.,Sugimoto, K.,Ogawa, S.,Rane, J.,Ishitani, M.,Hara, N.,Kitomi, Y.,Inukai, Y.,Ono, K.,Kanno, N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45:1097–1102.

[41]

Vandenbrink, J.P., and Kiss, J.Z. (2019). Plant responses to gravity. Semin. Cell Dev. Biol. 92:122–125.

[42]

Vandenbrink, J.P.,Kiss, J.Z.,Herranz, R., and Medina, F.J. (2014). Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 5:563.

[43]

Wang, X.,Yu, R.,Wang, J.,Lin, Z.,Han, X.,Deng, Z.,Fan, L.,He, H.,Deng, X.W., and Chen, H. (2020). The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls. Cell Rep. 31:107529.

[44]

Went, F.W., and Thimann, K.V. (1937). Phytohormones. The Macmillan Company,New York.

[45]

Wisniewska, J.,Xu, J.,Seifertová D.,Brewer, P.B.,Ruzicka, K.,Blilou, I.,Rouquié D.,Benková E.,Scheres, B., and Friml, J. (2006). Polar PIN localization directs auxin flow in plants. Science 312:883.

[46]

Xu, X.,Paik, I.,Zhu, L., and Huq, E. (2015). Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci. 20:641–650.

[47]

Yang, P.,Wen, Q.,Yu, R.,Han, X.,Deng, X.W., and Chen, H. (2020). Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 117:18840–18848.

[48]

Yu, B.,Lin, Z.,Li, H.,Li, X.,Li, J.,Wang, Y.,Zhang, X.,Zhu, Z.,Zhai, W.,Wang, X., et al. (2007). TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52:891–898.

[49]

Zadnikova, P.,Petrasek, J.,Marhavy, P.,Raz, V.,Vandenbussche, F.,Ding, Z.,Schwarzerova, K.,Morita, M.T.,Tasaka, M.,Hejatko, J., et al. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137:607–617.

[50]

Zhou, Z.,Bi, G., and Zhou, J.M. (2018). Luciferase complementation assay for protein–protein interactions in plants. Curr. Protoc. Plant Biol. 3:42–50.

[51]

Zhang, F.,Li, C.,Qu, X.,Liu, J.,Yu, Z.,Wang, J.,Zhu, J.,Yu, Y., and Ding, Z. (2022). A feedback regulation between ARF7-mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism. J. Integr. Plant Biol. 64:1339–1351.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/