A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus

Jialing Fu , Li Liao , Jiajing Jin , Zhihao Lu , Juan Sun , Lizhi Song , Yue Huang , Shengjun Liu , Ding Huang , Yuantao Xu , Jiaxian He , Bin Hu , Yiqun Zhu , Fangfang Wu , Xia Wang , Xiuxin Deng , Qiang Xu

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (8) : 1752 -1768.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (8) : 1752 -1768. DOI: 10.1002/jipb.13719
Research Article

A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus

Author information +
History +
PDF

Abstract

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii “SJG”) promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8,  GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1,  PSY1) and anthocyanin regulatory gene (Ruby1,  a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.

Keywords

anthocyanins / BBX22 / carotenoids / citrus / HY5 / internode elongation / plant height

Cite this article

Download citation ▾
Jialing Fu, Li Liao, Jiajing Jin, Zhihao Lu, Juan Sun, Lizhi Song, Yue Huang, Shengjun Liu, Ding Huang, Yuantao Xu, Jiaxian He, Bin Hu, Yiqun Zhu, Fangfang Wu, Xia Wang, Xiuxin Deng, Qiang Xu. A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus. Journal of Integrative Plant Biology, 2024, 66(8): 1752-1768 DOI:10.1002/jipb.13719

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ang, L.,Chattopadhyay, S.,Wei, N.,Oyama, T.,Okada, K.,Batschauer, A., and Deng, X. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1:213–222.

[2]

Burman, N.,Bhatnagar, A., and Khurana, J. (2018). OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light-regulated development. Plant Physiol. 176:1262–1285.

[3]

Bursch, K.,Toledo-Ortiz, G.,Pireyre, M.,Lohr, M.,Braatz, C., and Johansson, H. (2020). Identification of BBX proteins as rate-limiting cofactors of HY5. Nat. Plants 6:921–928.

[4]

Chen, W.,Cheng, Z.,Liu, L.,Wang, M.,You, X.,Wang, J.,Zhang, F.,Zhou, C.,Zhang, Z.,Zhang, H., et al. (2019). Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci. 288:110208.

[5]

Chen, Y.,Hou, M.,Liu, L.,Wu, S.,Shen, Y.,Ishiyama, K.,Kobayashi, M.,McCarty, D., and Tan, B. (2014). The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol. 166:2028–2039.

[6]

Chu, L.,Yan, Z.,Sheng, X.,Liu, H.,Wang, Q.,Zeng, R.,Hu, C., and Zhang, J. (2023). Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. Plant Physiol. 192:1947–1968.

[7]

Danecek, P.,Auton, A.,Abecasis, G.,Albers, C.,Banks, E.,DePristo, M.,Handsaker, R.,Lunter, G.,Marth, G.,Sherry, S., et al. (2011). The variant call format and VCFtools. Bioinformatics 27:2156–2158.

[8]

Davière, J., and Achard, P. (2016). A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9:10–20.

[9]

Dong, S.,Tarkowska, D.,Sedaghatmehr, M.,Welsch, M.,Gupta, S.,Mueller-Roeber, B., and Balazadeh, S. (2022). The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Mol. Plant 15:322–339.

[10]

Espley, R.,Brendolise, C.,Chagne, D.,Kutty-Amma, S.,Green, S.,Volz, R.,Putterill, J.,Schouten, H.,Gardiner, S.,Hellens, R., et al. (2009). Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183.

[11]

Feng, S.,Martinez, C.,Gusmaroli, G.,Wang, Y.,Zhou, J.,Wang, F.,Chen, L.,Yu, L.,Iglesias-Pedraz, J.,Kircher, S., et al. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479.

[12]

Gangappa, S., and Botto, J. (2016). The Multifaceted roles of HY5 in plant growth and development. Mol. Plant 9:1353–1365.

[13]

Hedden, P. (2020). The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 61:1832–1849.

[14]

Hollender, C.,Hadiarto, T.,Srinivasan, C.,Scorza, R., and Dardick, C. (2015). A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. New Phytol. 210:227–239.

[15]

Huang, D.,Wang, X.,Tang, Z.,Yuan, Y.,Xu, Y.,He, J.,Jiang, X.,Peng, S.,Li, L.,Butelli, E., et al. (2018). Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nat. Plants 4:930–941.

[16]

Huang, D.,Yuan, Y.,Tang, Z.,Huang, Y.,Kang, C.,Deng, X., and Xu, Q. (2019). Retrotransposon promoter of Ruby1 controls both light-and cold-induced accumulation of anthocyanins in blood orange. Plant Cell Environ. 42:3092–3104.

[17]

Kaneko, M.,Itoh, H.,Inukai, Y.,Sakamoto, T.,Ueguchi-Tanaka, M.,Ashikari, M., and Matsuoka, M. (2003). Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35:104–115.

[18]

Keawmanee, N.,Ma, G.,Zhang, L.,Yahata, M.,Murakami, K.,Yamamoto, M.,Kojima, N., and Kato, M. (2022). Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges. Plant Physiol. Biochem. 173:14–24.

[19]

Kendall, S.,Hellwege, A.,Marriot, P.,Whalley, C.,Graham, I., and Penfield, S. (2011). Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580.

[20]

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 14:1754–1760.

[21]

Liu, Q.,Xu, J.,Liu, Y.,Zhao, X.,Deng, X.,Guo, L., and Gu, J. (2007). A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 58:4161–4171.

[22]

Lyu, Y.,Dong, X.,Niu, S.,Cao, R.,Shao, G.,Sheng, Z.,Jiao, G.,Xie, L.,Hu, S.,Tang, S., et al. (2024). An orchestrated ethylene–gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding. J. Integr. Plant Biol. 66:1427–1439.

[23]

Ma, G.,Zhang, L.,Kudaka, R.,Inaba, H.,Murakami, K.,Yamamoto, M.,Kojima, N.,Yahata, M.,Matsumoto, H., and Kato, M. (2021). Auxin induced carotenoid accumulation in GA and PDJ-treated citrus fruit after harvest. Postharvest Biol. Tech. 181:111676.

[24]

Meng, Y.,Wang, Z.,Wang, Y.,Wang, C.,Zhu, B.,Liu, H.,Ji, W.,Wen, J.,Chu, C.,Tadege, M., et al. (2019). The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell 31:2751–2767.

[25]

Moreno, J.,Mi, J.,Agrawal, S.,Kössler, S.,Turečková V.,Tarkowská D.,Thiele, W.,Al-Babili, S.,Bock, R., and Schöttler, M. (2020). Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant J. 103:1967–1984.

[26]

Nisar, N.,Li, L.,Lu, S.,Khin, N., and Pogson, B. (2015). Carotenoid metabolism in plants. Mol. Plant 8:68–82.

[27]

Oyama, T.,Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Gene Dev. 11:2983–2995.

[28]

Peng, J.,Richards, D.,Hartley, N.,Murphy, G.,Devos, K.,Flintham, J.,Beales, J.,Fish, L.,Worland, A.,Pelica, F., et al. (1999). ‘Green revolution’ genes encodemutant gibberellin responsemodulators. Nature 400:256–261.

[29]

Qin, G.,Gu, H.,Ma, L.,Peng, Y.,Deng, X.,Chen, Z., and Qu, L. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 17:471–482.

[30]

Schomburg, F.,Bizzell, C.,Lee, D.,Zeevaart, J., and Amasino, R. (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163.

[31]

Song, L.,Liu, J.,Cao, B.,Liu, B.,Zhang, X.,Chen, Z.,Dong, C.,Liu, X.,Zhang, Z.,Wang, W., et al. (2023). Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617:118–124.

[32]

Song, Z.,Bian, Y.,Liu, J.,Sun, Y., and Xu, D. (2020). B-box proteins: Pivotal players in light-mediated development in plants. J. Integr. Plant Biol. 62:1293–1309.

[33]

Stamatakis, A. (2015). Using RAxML to infer phylogenies. Curr. Protoc. Bioinformatics 51:6.14.1–6.14.14.

[34]

Sun, H.,Uchii, S.,Watanabe, S., and Ezura, H. (2006). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47:426–431.

[35]

Sun, T. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiol. 154:567–570.

[36]

Tang, X.,Chen, S.,Yu, H.,Zheng, X.,Zhang, F.,Deng, X., and Xu, Q. (2021). Development of a gRNA–tRNA array of CRISPR/Cas9 in combination with grafting technique to improve gene-editing efficiency of sweet orange. Plant Cell Rep. 11:2453–2456.

[37]

Wang, X.,Li, M.,Wong, F.,Luk, C.,Chung, C.,Yung, W.,Wang, Z.,Xie, M.,Song, S.,Chung, G., et al. (2021). Increased copy number of gibberellin 2-oxidase 8 genes reduced trailing growth and shoot length during soybean domestication. Plant J. 107:1739–1755.

[38]

Weller, J.,Hecht, V.,Vander Schoor, J.,Davidson, S., and Ross, J. (2009). Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21:800–813.

[39]

Xiong, H.,Lu, D.,Li, Z.,Wu, J.,Ning, X.,Lin, W.,Bai, Z.,Zheng, C.,Sun, Y.,Chi, W., et al. (2023). The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. Plant Commun. 4:100297.

[40]

Yang, G.,Sun, M.,Brewer, L.,Tang, Z.,Nieuwenhuizen, N.,Cooney, J.,Xu, S.,Sheng, J.,Andre, C.,Xue, C., et al. (2024). Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. Plant Biotechnol. J. 22:1468–1490.

[41]

Yang, G.,Zhang, C.,Dong, H.,Liu, X.,Guo, H.,Tong, B.,Fang, F.,Zhao, Y.,Yu, Y.,Liu, Y., et al. (2022). Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling. Plant Cell 34:2038–2055.

[42]

Zhu, F.,Luo, T.,Liu, C.,Wang, Y.,Yang, H.,Yang, W.,Zheng, L.,Xiao, X.,Zhang, M.,Xu, R., et al. (2017a). An R2R3-MYB transcription factor represses the transformation of alpha-and beta-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol. 216:178–192.

[43]

Zhu, Q.,Yu, S.,Zeng, D.,Liu, H.,Wang, H.,Yang, Z.,Xie, X.,Shen, R.,Tan, J.,Li, H., et al. (2017b). Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol. Plant 10:918–929.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/