Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology

Su Yanga(), Wu Yu-Maoa(), Hu Junb()

Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (1) : 100245.

Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (1) : 100245. DOI: 10.1016/j.jnlest.2024.100245
Original article

Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology

  • Su Yanga(), Wu Yu-Maoa(), Hu Junb()
Author information +
History +

Abstract

This paper builds a binary tree for the target based on the bounding volume hierarchy technology, thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N3)𝑂(𝑁3) to O(N2logN)𝑂(𝑁2log𝑁). Numerical results show that the proposed method is more efficient than the traditional method. It is verified in multiple examples that the proposed method can complete the convergence of the current. Moreover, the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector, which is beneficial to current iteration and convergence. Compared with the brute force method, the current method can improve the simulation efficiency by 2 orders of magnitude. The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios.

Keywords

Bounding volume hierarchy / Cavity scattering / Iterative physical optics (IPO) / Bounding volume hierarchy / Cavity scattering / Iterative physical optics (IPO)

Cite this article

Download citation ▾
Su Yang, Wu Yu-Mao, Hu Jun. Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology. Journal of Electronic Science and Technology, 2024, 22(1): 100245 https://doi.org/10.1016/j.jnlest.2024.100245

References

[1]
J. Song, C.-C. Lu, W.C. Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE T. Antenn. Propag., 45 (10) (Oct.1997), pp. 1488-1493.
[2]
W.-J. He, Z. Yang, X.-W. Huang, W. Wang, M.-L. Yang, X.-Q. Sheng. Solving electromagnetic scattering problems with tens of billions of unknowns using GPU accelerated massively parallel MLFMA. IEEE T. Antenn. Propag., 70 (7) (Jul.2022), pp. 5672-5682.
[3]
B. Michiels, J. Fostier, I. Bogaert, D. De Zutter. Full-wave simulations of electromagnetic scattering problems with billions of unknowns. IEEE T. Antenn. Propag., 63 (2) (Feb.2015), pp. 796-799.
[4]
N. Zhang, Y.-M. Wu, J. Hu, Y.-Q. Jin. The fast physical optics method on calculating the scattered fields from electrically large scatterers. IEEE T. Antenn. Propag., 68 (3) (Mar.2020), pp. 2267-2276.
[5]
W.B. Gordon. High frequency approximations to the physical optics scattering integral. IEEE T. Antenn. Propag., 42 (3) (Mar.1994), pp. 427-432.
[6]
J.M. Rius, A. Carbo, J. Bjerkemo, et al. New graphical processing technique for fast shadowing computation in PO surface integral. IEEE T. Antenn. Propag., 62 (5) (May2014), pp. 2587-2595.
[7]
D.P. Xiang, M.M. Botha. Efficient and robust shadowing determination for mesh-based physical optics analysis. IEEE T. Antenn. Propag., 70 (11) (Nov.2022), pp. 10787-10799.
[8]
H. Ling, R.-C. Chou, S.-W. Lee. Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE T. Antenn. Propag., 37 (2) (Feb.1989), pp. 194-205.
[9]
P.-B. Wei, M. Zhang, W. Niu, W.-Q. Jiang. GPU-based combination of GO and PO for electromagnetic scattering of satellite. IEEE T. Antenn. Propag., 60 (11) (Nov.2012), pp. 5278-5285.
[10]
M.F. Catedra, J. Perez, F.S. de Adana, O. Gutierrez. Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios. IEEE T. Antennas Propag. Mag, 40 (2) (Apr.1998), pp. 15-28.
[11]
F. Xu, Y.-Q. Jin. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface. IEEE T. Antenn. Propag., 57 (5) (May2009), pp. 1495-1505.
[12]
H. Buddendick, T.F. Eibert. Acceleration of ray-based radar cross section predictions using monostatic-bistatic equivalence. IEEE T. Antenn. Propag., 58 (2) (Feb.2010), pp. 531-539.
[13]
T.-Q. Fan, L.-X. Guo, W. Liu. A novel OpenGL-based MoM/SBR hybrid method for radiation pattern analysis of an antenna above an electrically large complicated platform. IEEE T. Antenn. Propag., 64 (1) (Jan.2016), pp. 201-209.
[14]
Y.-W. Wei, C.-F. Wang, C.Y. Kee, T.T. Chia. An accurate model for the efficient simulation of electromagnetic scattering from an object above a rough surface with infinite extent. IEEE T. Antenn. Propag., 69 (2) (Feb.2021), pp. 1040-1051.
[15]
Y.-B. Tao, H. Lin, H.-J. Bao. GPU-based shooting and bouncing ray method for fast RCS prediction. IEEE Trans. A. Propag., 58 (2) (Feb.2010), pp. 494-502.
[16]
W.-F. Huang, Z.-Q. Zhao, R. Zhao, J.-Y. Wang, Z.-P. Nie, Q.-H. Liu. GO/PO and PTD with virtual divergence factor for fast analysis of scattering from concave complex targets. IEEE T. Antenn. Propag., 63 (5) (May2015), pp. 2170-2179.
[17]
M. Kaye, P. Murthy, G. Thiele. An iterative method for solving scattering problems. IEEE T. Antenn. Propag., 33 (11) (Nov.1985), pp. 1272-1279.
[18]
F. Obelleiro-Basteiro, J. Luis Rodriguez, R.J. Burkholder. An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities. IEEE T. Antenn. Propag., 43 (4) (Apr.1995), pp. 356-361.
[19]
R.J. Burkholder. A fast and rapidly convergent iterative physical optics algorithm for computing the RCS of open-ended cavities. Appl. Comput. Electromagn. Soc. J., 16 (1) (Mar.2001), pp. 53-59.
[20]
R.J. Burkholder, T. Lundin. Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities. IEEE T. Antenn. Propag., 53 (2) (Feb.2005), pp. 793-799.
[21]
R.J. Burkholder, ?. Tokg?z, C.J. Reddy, W.O. Coburn. Iterative physical optics for radar scattering predictions. ACES J., 24 (2) (Apr.2009), pp. 241-258.
[22]
M.A. Shah, B.A. Salau, ?. Tokg?z. Bistatic radar cross section prediction using iterative physical optics with physical theory of diffraction for plate geometries. Proc. Of IEEE Intl. Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal (2020), pp. 1171-1172.
[23]
M.A. Shah, ?. Tokg?z, B.A. Salau. Radar cross section prediction using iterative physical optics with physical theory of diffraction. IEEE T. Antenn. Propag., 70 (6) (Jun.2022), pp. 4683-4690.
[24]
I. Gershenzon, Y. Brick, A. Boag. Shadow radiation iterative physical optics method for high-frequency scattering. IEEE T. Antenn. Propag., 66 (2) (Feb.2018), pp. 871-883.
[25]
C.-L. Dong, L.-X. Guo, X. Meng. An accelerated algorithm based on GO-PO/PTD and CWMFSM for EM scattering from the ship over a sea surface and SAR image formation. IEEE T. Antenn. Propag., 68 (5) (May2020), pp. 3934-3944.
[26]
W. Meng, J. Li, Y.-J. Xi, L.-X. Guo, S.-K. Wen. Electromagnetic scattering for multiple moving targets above/on a rough surface using multi-dynamic-octrees-based SBR algorithm. IEEE T. Geosci. Rem. Sens., 61 (Nov.2023), pp. 1-12. 2005512.
[27]
Y.-B.Tao, H. Lin, H. Bao. KD-tree based fast ray tracing for RCS prediction. Prog. Electromagn. Res., 81(Feb. 2008), pp. 329-341.
[28]
J. Huo, L. Xu, X. Shi, Z. Yang. An accelerated PO for EM scattering from electrically large targets. IEEE Antenn. Wireless Propag. Lett., 20 (12) (Dec.2021), pp. 2300-2304.
[29]
J.-M. Jin, J. Liu, Zh. Lou, C.S.T. Liang. A fully high-order finite-element simulation of scattering by deep cavities. IEEE T. Antenn. Propag., 51 (9) (Sept.2003), pp. 2420-2429.
[30]
P.H. Pathak, R.J. Burkholder. Modal, ray,beam techniques for analyzing the EM scattering by open-ended waveguide cavities. IEEE T. Antenn. Propag., 37 (5) (May1989), pp. 635-647.

Accesses

Citations

Detail

Sections
Recommended

/