[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[2] 叶培建,邹乐洋,王大轶,等. 中国深空探测领域发展及展望[J]. 国际太空,2018,478(10):6-12
YE P J,ZOU L Y,WANG D T,et al. Development and prospect of Chinese deep space exploration[J]. Space International,2018,478(10):6-12
[3] 吴伟仁,王琼,唐玉华,等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报,2017,4(2):111-117
WU W R,WANG Q,TANG Y H,et al. Design of Chang'e-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration,2017,4(2):111-117
[4] 张嘉毅. NASA发布《国家太空探索活动报告》[J]. 科技中国,2018(11):102-102
ZHANG J Y. NASA released the national report on space exploration activities[J]. Science and Technology of China,2018(11):102-102
[5] 王霄,吴润生. 俄罗斯载人登月发展现状及趋势[J]. 国际太空,2018,479(11):46-51
WANG X,WU R S. Status and trend of Russian manned Moon landing[J]. Space International,2018,479(11):46-51
[6] 纪汉霖,黄嘉冬. 我国人工智能产业发展及应用研究[J]. 软件导刊,2019,18(3):40-44
JI H L,HUANG J D. The development and application of artificial intelligence industry in China[J]. Software Guide,2019,18(3):40-44
[7] 郭延宁,冯振,马广富,等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报,2018,39(11):1185-1196
GUO Y N,FENG Z,MA G F,et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics,2018,39(11):1185-1196
[8] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28
CUI P Y,XU R,ZHU S Y,et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica ET Astronautica Sinica,2014,35(1):13-28
[9] 程翔. 人工智能在航天领域中的应用[J]. 系统工程与电子技术,1989(3):1-9
CHENG X. Applications of artificial intelligence to aerospace[J]. Systems Engineering and Electronics,1989(3):1-9
[10] 徐振耀. 人工智能在航空航天领域中的应用[J]. 系统工程与电子技术,1993(3):49-53
XU Z Y. Applications of AI to aerospace[J]. Systems Engineering and Electronics,1993(3):49-53
[11] 郭凤英,何洪庆. 人工智能技术在航天领域的应用[J]. 中国航天,1996(6):19-21
GUO F Y,HE H Q. Applications of AI technology to aerospace[J]. Aerospace China,1996(6):19-21
[12] 闫旭. 人工智能在航天领域中的应用探讨[J]. 数字通信世界,2019(4):221
YAN X. Discussion on the application of artificial intelligence in aerospace[J]. Digital Communication World,2019(4):221
[13] 杨维垣,张培志. 航天专家系统需求、现状、特点和发展战略的初步研究[J]. 航天器工程,1993(1):11-19
YANG W H,ZHANG P Z. A preliminary study on the requirements,current situation,characteristics and development strategy of space expert system[J]. Spacecraft Engineering,1993(1):11-19
[14] JPL. NASA/JPL Mars pathfinder[EB/OL].[2019-09-16]. http://marsprogram.jpl.nasa.Gov/MPF/.
[15] JPL. NASA/JPL Mars exploration rover mission[EB/OL].[2019-09-16]. http://marsrovers.jpl.nasa.gov/home/index.html.
[16] HELMICK D,ANGELOVA A,MATTHIES L. Terrain adaptive navigation for planetary rovers[J]. Journal of Field Robotics,2009,26(4):391-410
[17] WRIGHT J,HARTMAN F,COOPER B,et al. Driving on Mars with RSVP[J]. IEEE Robotics & Automation Magazine,2006,13(2):37-45
[18] SQUYRES S W,KNOLL A H,ARVIDSON R E,et al. Exploration of victoria crater by the Mars rover opportunity[J]. Science,2009,324:1058-1061
[19] SQUYRES S W,ARVIDSON R E,BELL J F,et al. The Spirit rover’s Athena science investigation at Gusev Crater,Mars[J]. Science,2004,305:794-799
[20] OJEDA L,BORENSTEIN J,WITUS G,et al. Terrain characterization and classification with a mobile robot[J]. Journal of Field Robotics,2006,23(2):103-122
[21] ANGELOVA A,MATTHIES L,HELMICK D,et al. Learning and prediction of slip from visual information[J]. Journal of Field Robotics,2007,24(3):205-231
[22] BROOKS C A,IAGNEMMA K. Self‐supervised terrain classification for planetary surface exploration rovers[J]. Journal of Field Robotics,2012,29(3):445-468
[23] THOMPSON D R,CABROL N A. Fast onboard texture analysis for planetary exploration[C]//IJCAI Workshop on Artificial Intelligence in Space.[S. l.]:IJCAI,2009.
[24] WAGSTAFF K L,THOMPSON D R,ABBEY W,et al. Smart,texture‐sensitive instrument classification for in situ rock and layer analysis[J]. Geophysical Research Letters,2013,40(16):4188-4193
[25] THOMPSON D R,ALLWOOD A C,BEKKER D L,et al. TextureCam:autonomous image analysis for astrobiology survey[C]//Lunar and Planetary Science Conference. Woodlands. Texas:[s. n.],2012.
[26] HAYDEN D S,CHIEN S,THOMPSON D R,et al. Using clustering and metric learning to improve science return of remote sensed imagery[J]. Acm Transactions on Intelligent Systems & Technology,2012,3(3):1-19
[27] CHIEN S,RABIDEAU G,TRAN D,et al. Activity-based scheduling of science campaigns for the rosetta orbiter[C]// International Conference on Artificial Intelligence. [S. l.]:AAAI Press,2015.
[28] JPL. NASA Mars rover can choose laser targets on its own[EB/OL].[2019-09-16]. https://mars.jpl.nasa.gov/news/1925/nasa-mars-rover-can-choose-laser-targets-on-its-own/.
[29] JPL. Mars Science Laboratory–Curiosity:NASA’s next Mars rover[EB/OL].[2019-09-16]. http://www.nasa.gov/mission_pages/msl/.
[30] SUN Z Z,JIA Y,ZHANG H. Technological advancements and promotion roles of Chang’e-3 lunar probe mission[J]. Sci China Tech Sci,2013,56:2702-2708
[31] ONO M,FUCHS T J,STEFFY A,et al. Risk-aware planetary rover operation:autonomous terrain classification and path planning[C]//2015 IEEE Aerospace Conference. Big Sky,MT:IEEE,2015:1-10.
[32] ROTHROCK B,KENNEDY R,CUNNINGHAM C,et al. Spoc:deep learning-based terrain classification for mars rover missions[C]//AIAA SPACE 2016. [S. l.]:AIAA,2016:5539.
[33] GAUDET B,FURFARO R. Robust spacecraft hovering near small bodies in environments with unknown dynamics using reinforcement learning[C]// AIAA/AAS,Astrodynamics Specialist Conference.[S. l.]:AIAA,2013.
[34] GAUDET B,FURFARO R. Adaptive pinpoint and fuel efficient mars landing using reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica,2014,1(4):397-411
[35] FURFARO R,WIBBEN D R,GAUDET R,et al. Terminal multiple surface sliding guidance for planetary landing:development,tuning and optimization via reinforcement learning[J]. The Journal of the Astronautical Sciences,2015,62(1):73-99
[36] FURFARO R,LINARES R. Waypoint-Based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach[C]//3rd International Academy of Astronautics Conference on Dynamics and Control of Space Systems.Moscow,Russian Federation:[s. n.],2017.
[37] DING L,GAO H B,DENG Z Q,et al. Three-layer intelligence of planetary exploration wheeled mobile robots:Robint,virtint,and humint[J]. Science China Technological Sciences,2015,58(8):1299-1317
[38] CAMPBELL T,FURFARO R,LINARES R. A deep learning approach for optical autonomous planetary relative terrain navigation[C]//27th AAS/AIAA Spaceflight Mechanics Meeting.San Antonio,Texas:[s. n.],2017.
[39] FURFARO R,BLOISE I,ORLANDELLI M,et al. Deep learning for autonomous lunar landing[C]// AAS/AIAA Astrodynamics Specialist Conference.Snowbird,UT:AIAA,2018.
[40] WILKINSON M C,MEADE A J. Neural-network-inspired machine learning for autonomous lunar targeting[J]. Journal of Aerospace Information Systems,2015,11(7):458-466
[41] BOUKERCHA A,AL-TAMEEMI A,GRUMPE A,et al. Automatic crater recognition using machine learning with different features and their combination[C]// Lunar & Planetary Science Conference.[S. l.]:Lunar and Planetary Science Conference,2014.
[42] HECKE K V,DE CROON G C H E,HENNES D,et al. Self-supervised learning as an enabling technology for future space exploration robots:ISS experiments on monocular distance learning[J]. Acta Astronautica,2017,140:1-9
[43] IZZO D,WEISS N,SEIDL T. Constant-optic-flow lunar landing:optimality and guidance[J]. Journal of Guidance Control & Dynamics,2012,34(5):1383-1395
[44] SáNCHEZ-SáNCHEZ C,DARIO I. Real-time optimal control via deep neural networks:study on landing problems[J]. Journal of Guidance Control & Dynamics,2016,41(3):1-14
[45] IZZO D,SPRAGUE C,TAILOR D. Machine learning and evolutionary techniques in interplanetary trajectory design[M].Germany:Springer,2019.
[46] IZZO D,M?RTENS M,PAN B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics,2019,3(4):287-299
[47] ZHANG P,LIU X,ZHAO B,et al. Asteroid landing via onboard optimal guidance based on bidirectional extreme learning machine[C]// International Joint Conference on Neural Networks.[S. l.]:IEEE,2016.
[48] CHENG L,WANG Z,JIANG F,et al. Real-time optimal control for spacecraft orbit transfer via multi-scale deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems.[S. l.]:IEEE,2019.
[49] SHANG H,WU X,QIAO D,et al. Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning[J]. Aerospace Science and Technology,2018,79:570-579
[50] 俞一鹏. 脑机融合的混合智能系统:原型及行为学验证研究[D]. 杭州:浙江大学,2016.
YU Y P. Cyborg intelligent systems based on brain-machine integration:research on prototypes and behavioral verification[D]. Hangzhou:Zhejiang University,2016.
[51] 赵海亮. 融合人机协同的月球车路径规划[D]. 沈阳:东北大学,2012.
ZHAO H L. The research of lunar rover path planning with human-machine collabrative[D]. Shenyang:Northeastern University,2012.
[52] 吴伟仁,于登云,黄江川,等. 太阳系边际探测研究[J]. 中国科学:信息科学,2019,49(1):6-21
WU W R,YU D Y,HUANG J C,et al. Exploring the Solar system boundary[J]. SCIENCE CHINA Information Sciences,2019,49(1):6-21
[53] FREITAS R A,HEALY T J,LONG J E. Advanced automation for space missions[J]. Journal of the Astronautical Sciences,1982,1(1):1-11
[54] VOOSEN P. NASA to pay private space companies for moon rides[J]. Science,2018,262(6417):875-876
[55] National space exploration campaign report[EB/OL]. [2019-09-16]. https://www.nasa.gov/sites/default/files/atoms/files/nationalspaceexplorationcampaign.pdf.
[56] What is Artemis?[EB/OL].[2019-09-16]. https://www.nasa.gov/feature/what-is-artemis/.
[57] 周生东,王永生. 俄罗斯联邦2016-2025年航天计划基本内容[J]. 国际太空,2017(5):14-18
ZHOU S D,WANG Y S. Basic content of Russia federation space program 2016-2025[J]. Space International,2017(5):14-18
[58] 俄罗斯:执行载人登月任务,着手建造月球基地[EB/OL].[2019-09-16]. http://news.cnr.cn/gjxw/gnews/20190307/t20190307_524533372.shtml?from=groupmessage.
[59] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报,2018,5(4):78-85
YUAN Y,ZHAO C,HU Z Y. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration,2018,5(4):78-85