[1] FERL R J, WHEELER R, LEVINE H G, et al. Plants in space[J]. Current opinion in plant biology,2002(5):258-263
[2] WHEELER R M. Plants for human life support in space: from Myers to Mars[J]. Gravitational Space Biology,2010,23:25-35
[3] WHEELER R M. Agriculture for space: people and places paving the way[J]. Open Agriculture,2017(2):14-32
[4] FU Y, LI L, XIE B, et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology,2016,16(12):925-936
[5] VANDENBRINK J P, KISS J Z. Space, the final frontier: a critical review of recent experiments performed in microgravity[J]. Plant Science,2016,243:115-119
[6] STANKOVIC B. Into space - a journey of how humans adapt and live in microgravity[J].Plants in Space, 2018, P.351–404 doi: 10.5772/intechopen.74230.
[7] KORDYUM E L. Space biology and medicine in Ukraine: history and prospects [J]. Science and Science of Science, 2016, 1:87-110. (in Russian) URL:http://nbuv.gov.ua/UJRN/NNZ_2016_1_10.
[8] HALSTEAD T W, DUTCHER F R. Plants in space[J]. Annual Review of Plant Physiology,1987,38:317-34
[9] CLAASEN D E, SPOONER B S. Impact of altered gravity on aspects of cell biology[J]. International Review of Cytology,1994,156:301-373
[10] KORDYUM E L. Biology of plant cells in microgravity and under clinostating[J]. International Review of Cytology,1997,171:1-78
[11] PAUL A L, WHEELER R M, LEVINE H G, et al. Fundamental plant biology enabled by the space shuttle[J]. American Journal of Botany,2013a,100:226-234
[12] HOSON T. Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space[J]. Life,2014,4(2):205-216
[13] KITTANG A I, IVERSEN T H, FOSSUM K R, et al. Exploration of plant growth and development using the European modular cultivation system facility on the International Space Station[J]. Plant Biology,2014,16(3):528-538
[14] ZHENG H Q, FEI H, JIE L. Higher plants in space: microgravity perception, response, and adaptation[J]. Microgravity Science and Technology,2015,27:377-386
[15] KORDYUM E L, CHAPMAN D K. Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels[J]. Cytology and Genetics,2017,51:108-116
[16] MERKYS A I, LAURINAVICHIUS R S. Full cycle of individual development of Arabidobsis theliana (L.) Heynh. plants on board the orbital station Salyut-7[J]. Reports of the USSR Academy of Sciences,1983,271:509-512
[17] LINK B M, DURST S J, ZHOU W, et al. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station[J]. Advances in Space Research,2003,31:2237-2243
[18] LINK B M, JAMES S, BUSSE J S, et al. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity[J]. Astrobiology,2014,14:866-875
[19] YANO S, KASAHARA H, MASUDA D, et al. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station[J]. Advances in Space Research,2013,51:780-788
[20] KORDYUM E L, CHAPMAN D K. Plants in Space[M]. Kyiv, UA:Akademperiodika, 2007.
[21] MUSGRAVE M E, KUANG A, XIAO Y, et al. Gravity independence of seed-to-seed cycling in Brassica rapa[J]. Planta,2000,210:400-406
[22] KUANG A, POPOVA A, XIAO Y, et al. Pollination and embryo development in Brassica rapa L. in microgravity[J]. International Journal of Plant Sciences,2000a,161:203-211
[23] KUANG A, XIAO Y, MCCLURE G, et al. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L[J]. Annals of Botany,2000b,85(6):851-859
[24] KUANG A, POPOVA A, MCCLURE G, et al. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity[J]. International Journal of Plant Sciences,2005,166:85-96
[25] LEVINSKIKH M A, SYCHEV V N, SIGNALOVA O B, et al. Growth and development of plants in a sequence of generations under the conditions of space flight (experiment Greenhouse-3)[J]. Aviakosm Ekolog Med,2001,35:43-48
[26] SYCHEV V N, SHEPELEV E Y, MELESHKO G I, et al. Main characteristics of biological components of developing life support system observed during the experiments aboard orbital complex Mir[J]. Advances in Space Research,2001,27:1529-1534
[27] VESELOVA T D, ILYINA G M, DJALILOVA T T. Cytoembriological investigations of super dwarf wheat grown on board the orbital station Mir[J]. Aviakosm Ekolog Med,1999,33(2):30-37
[28] LEVINSKIKH M A, SYCHEV V N, DERENDIAEVA T A, et al. Growth of wheat from seed-to-seed in space flight[J]. Aviakosm Ekolog Med,2000,34:44-49
[29] SYCHEV V N, LEVINSKIKH M A, GOSTIMSKY S A, et al. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station[J]. Acta Astronautica,2007,60:426-432
[30] POPOVA A, KUANG A, MCCLURE G, et al. Reserve nutrient substance accumulation in Brassica rapa L. seeds in microgravity conditions (STS-87)[J]. Journal of Gravitational Physiology,2002,9(1):237-238
[31] MUSGRAVE M E, KUANG A, TUOMINEN L K, et al. Seed storage reserves and glucosinolates in Brassica rapa L. grown on the International Space Station[J]. Journal of the American Society for Horticultural Science,2005,130:818-856
[32] POPOVA A F, IVANENKO G F. Embryo development of Brassica rapa L. under clinorotation[J]. Space Science Technology,2003,9:41-43
[33] KORDYUM E L, NEDUKHA E M, NECHITAILI G S. Structural-functional organization of storage parenchyma cells of Solanum tuberosum minitubers formed under space flight:AIAA 31707-526[R]. Washington, DC: World Space Congress Press, 1992.
[34] KORDYUM E, BARANENKO V, NEDUKHA O, et al. Development of potato minitubers in microgravity[J]. Plant Cell Physiology,1997,38:1111-1117
[35] BROWN C S, TIBBITTS T W, CROXDALE J G, et al. Potato tuber formation in the spaceflight environment[J]. Life support & biosphere science,1997,4(1-2):71-76
[36] CROXDALE J, COOK M, TIBBITTS T W, et al. Structure of potato tubers formed during spaceflight[J]. Journal of Experimental Botany,1997,48(317):2037-2043
[37] COOK M E, CROXDALE J L, TIBBITTS T W, et al. Development and growth of potato tubers in microgravity[J]. Advances in Space Research,1998,21(8-9):1103-1110
[38] COOK M E, CROXDALE J G. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions[J]. Journal of Experimental Botany,2003,54(390):2157-2164
[39] MORTLEY D G, CONRAD K B, WALTER A H, et al. Iinfluence of microgravity environment on root growth, soluble sugars, and starch concentration of sweet potato stem cuttings[J]. Journal of the American Society for Horticultural Science,2008,133(3):327-332
[40] NEDUKHA O M, KORDYUM E L, SCHNYUKOVA E I. The influence of imitated microgravity on amyloplast structure, the composition and characteristics of potato minitubers[J]. Space Science and Technology,2007,13:62-68
[41] SINGH N, INOUCHI N, NISHINARI K. Structure and viscoelastic characteristics of starches separated from normal, sugary and waxy maize[J]. Food Hydrocolloids,2006,20:923-935
[42] TESTER R, KARKALAS J, QI X. Starch structure and digestibility of an enzyme-substrate relationship[J]. World's Poultry Science Journal,2004,60:186-195
[43] WANG H, ZHENG H Q, SHA W, et al. A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation[J]. Journal of Experimental Botany,2006,57:827-835
[44] PAUL A L, ZUPANSKA A K, OSTROW D T, et al. Spaceflight transcriptomes: unique responses to a novel environment[J]. Astrobiology,2012,12:40-56
[45] CORRELL M J, PYLE T P, MILLAR K D, et al. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes[J]. Planta,2013,238(3):519-533
[46] XU D, GUO S, LIU M. Identification of miRNAs involved in longterm simulated microgravity response in Solanum lycopersicum[J]. Plant Physiology and Biochemistry,2013,66:10-19
[47] ZHANG Y, WANG L, XIE J, et al. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft[J]. Planta,2015,241:475-488
[48] KWON T, SPARKS J A, NAKASHIMA J, et al. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development[J]. American Journal of Botany,2015,102(1):21-35
[49] PAUL A L, ZUPANSKA A K, SCHULTZ E, et al. Organ-specific remodeling of the Arabidopsis transcriptome in response to space flight[J]. BMC Plant Biology,2013b,13:112
[50] FERL R J, KOH J, DENISON F, et al. Spaceflight induces specific alterations in the proteomes of Arabidopsis[J]. Astrobiology,2015,15(1):32-56
[51] JIANG L, ROGERS J C. (2003) Sorting of lytic enzymes in the plant Golgi apparatus. Annual Plant Review, 9, 114-140Brown C S, Hilaire E M, Guikema J A, et al. Soybean seedling growth, ultrastructure, and carbohydrate metabolism in microgravity[J]. Plant Physiology, 1995, 108(2): 31.
[52] KUMAMARU T, OGAWA M, SATOH H, et al. Protein body biogenesis in cereal endosperms[M]. Olsen: Endosperm Springer-Verlag Berlin Heidelberg, 2007.
[53] CUI Y, SHEN J, GAO C, et al. Biogenesis of plant prevacuolar multivesicular bodies[J]. Molecular Plant,2016,9(6):774-786
[54] TIBBITTS T W, ALFORD D K. Controlled ecological life support system. Use of higher plants: CP-223[R]. USA: NASA Conference Publication, 1982.
[55] KHUDYAK M I. Endosperm of angiosperm plants[M]. Kyiv, UA: Naukova Dumka, 1963. (in Russian)
[56] LOPES M A, LARKINS B. Endosperm origin, development, and function[J]. The Plant Cell,1993,5(10):1383-1399
[57] GROSSNIKLAUS U. Genomic imprinting in plants: a predominantly maternal affair[J]. Plant Epigenetics Blackwell Publishing, Sheffield,2005:174-200
[58] RAISSIG M T, BAROUX C, GROSSNIKLAUS U. Regulation and flexibility of genomic imprinting during seed development[J]. Plant Cell,2011,23(1):16-26
[59] GEHRING M, SATYAKI P R. Endosperm and imprinting, inextricably linked[J]. Plant Physiology,2017,173:143-154