Topic:Deep Space Extreme Environment Protection and New Materials

Design and Test Verification of Energy Absorption Material in the Soft Landing Gear for Tianwen-1 Mars Probe

Expand
  • 1. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
    2. Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230021, China

Received date: 04 Jun 2021

Revised date: 09 Jul 2021

Published date: 20 Oct 2021

Abstract

The landing gear is a key component for soft-landing on Mars, which should use high energy-absorption and excellent thermal stability material to absorb the impact energy of Mars probe. The energy absorption pull rods made by directionally solidified twinning-induced plasticity (TWIP) were utilized for the soft landing gears of Mars lander. The mechanical behavior and microstructure evolution of TWIP steel were investigated. The results show that TWIP steel can sustain the high plasticity of 600 MPa ultimate true stress and 72% true strain. The landing dynamic simulation and experiment results of soft-landing gear drop testes demonstrate that that Mars landing system is able to adapt to the complex topography conditions because of the high energy absorption ability of pull rods.

Cite this article

LUO Min, YANG Jianzhong, HAN Fusheng, MAN Jianfeng . Design and Test Verification of Energy Absorption Material in the Soft Landing Gear for Tianwen-1 Mars Probe[J]. Journal of Deep Space Exploration, 2021 , 8(5) : 472 -477 . DOI: 10.15982/j.issn.2096-9287.2021.20210044

References

[1] 杨建中. 航天器着陆缓冲机构[M]. 北京: 中国宇航出版社, 2015.
YANG J Z. Landing gear of spacecraft[M]. Beijing: China Astroautic Publishing Limited, 2015.
[2] 曾福明, 杨建中, 娄汉文, 等. 月球及行星探测器软着陆缓冲器技术综述[C]//中国宇航学会深空探测技术专业委员会第一届学术会议. 哈尔滨:中国宇航学会深空探测技术专业委员会, 2005.
ZENG F M, YANG J Z, LOU H W. Review of soft landing technology for lunar and planetary probes[C]//1st Academic Conference of Committee of Deep Space Exploration Technology Chinese Society of Astronautics. 1st academic conference. Harbin: Committee of Deep Space Exploration Technology Chinese Society of Astronautics, 2005.
[3] 曾福明, 杨建中, 满剑锋, 等. 月球着陆器着陆缓冲机构设计方法研究[J]. 航天器工程,2011,20(2):46-51
ZENG F M, YANG J Z, MAN J F, et al. Study on design method of landing gear for lunar lander[J]. Spacecraft Engineering,2011,20(2):46-51
[4] ZHENG G, NIE H, LUO M, et al. Parametric design and analysis on the landing gear of a planet lander using the response surface method[J]. Acta Astronautica,2018,148:225-234
[5] WANG D, WANG K, LUO M, et al. Microstructure evolution and strain hardening behavior during plastic deformation of directionally solidified twinning-induced plasticity steel[J]. Materials and Design,2015,66:627-634
[6] LU G, YU T X. Energy absorption of structures and materials[M]. Cambridge: Woodhead Publishing Limited, 2003.
[7] 杨建中, 吴琼, 于登云, 等. 无人月球科考站构建于运行关键技术初探[J]. 深空探测学报(中英文),2020,7(2):111-117
YANG J Z, Wu Q, YU D Y, et al. Preliminary study on key technologies for construction and operation of robotics lunar scientific base[J]. Journal of Deep Space Exploration,2020,7(2):111-117
[8] 王永滨, 蒋万松, 王磊, 等。载人登月舱月面着陆缓冲装置设计与研制[J] 深空探测学报(中英文), 2016, 3(3): 262-267.
WANG Y B, JIANG W S, WANG L. Design and development of landing gear technology for manned lunar landing[J]. Journal of Deep Space Exploration, 2016, 3(3): 262-267.
[9] 杨建中, 满剑锋, 曾福明, 等. “嫦娥三号”着陆缓冲机构的研究成果及其应用[J]. 航天返回与遥感, 2014, 35 (6): 20-27.
YANG J Z, MAN J F, ZENG F M, et al. Achievements and applications of landing gear for Chang’e-3 lander[J]. Spacecraft Recovery & Remote Sensing,2014, 35 (6): 20-27.
[10] 饶炜, 孙泽洲, 孟林智, 等。火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报(中英文), 2016, 3(2): 121-128.
RAO W, SUN Z Z, MENG L Z, et al. Analysis and design for the Mars entry[J]. Journal of Deep Space Exploration, 2016, 3(2): 121-128.
[11] 王越, 王彪, 王迅, 等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383
WANG Y, WANG B, WANG X, et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383
Outlines

/