Non-alcoholic fatty liver disease: a narrative review of genetics

Christopher J. Danford, Zemin Yao, Z. Gordon Jiang

PDF(284 KB)
PDF(284 KB)
Journal of Biomedical Research ›› 2018, Vol. 32 ›› Issue (6) : 389-400. DOI: 10.7555/JBR.32.20180045
Review Article
Review Article

Non-alcoholic fatty liver disease: a narrative review of genetics

Author information +
History +

Abstract

Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver diseases worldwide. It encompasses a spectrum of disorders ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. One of the key challenges in NAFLD is identifying which patients will progress. Epidemiological and genetic studies indicate a strong pattern of heritability that may explain some of the variability in NAFLD phenotype and risk of progression. To date, at least three common genetic variants in the PNPLA3, TM6SF2, and GCKR genes have been robustly linked to NAFLD in the population. The function of these genes revealed novel pathways implicated in both the development and progression of NAFLD. In addition, candidate genes previously implicated in NAFLD pathogenesis have also been identified as determinants or modulators of NAFLD phenotype including genes involved in hepatocellular lipid handling, insulin resistance, inflammation, and fibrogenesis. This article will review the current understanding of the genetics underpinning the development of hepatic steatosis and the progression of NASH. These newly acquired insights may transform our strategy to risk-stratify patients with NAFLD and to identify new potential therapeutic targets.

Keywords

NAFLD / NASH / genetics / PNPLA3 / TM6SF2 / GCKR / MBOAT7

Cite this article

Download citation ▾
Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics. Journal of Biomedical Research, 2018, 32(6): 389‒400 https://doi.org/10.7555/JBR.32.20180045

References

[1]
Younossi ZM, Koenig AB, Abdelatif D, Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73–84.
Pubmed
[2]
Browning JD, Szczepaniak LS, Dobbins R, Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity[J]. Hepatology, 2004, 40(6): 1387–1395.
Pubmed
[3]
Lazo M, Hernaez R, Eberhardt MS, Prevalence of nonalcoholic fatty liver disease in the United States: The third national health and nutrition examination survey, 1988–1994[J]. Am J Epidemiol, 2013, 178(1): 38–45.
Pubmed
[4]
Wong RJ, Aguilar M, Cheung R, Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States[J]. Gastroenterology, 2015, 148(3): 547–555.
Pubmed
[5]
Charlton MR, Burns JM, Pedersen RA, Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States[J]. Gastroenterology, 2011, 141(4): 1249–1253.
Pubmed
[6]
Marchesini G, Brizi M, Bianchi G, Nonalcoholic fatty liver disease: a feature of the metabolic syndrome[J]. Diabetes, 2001, 50(8): 1844–1850.
Pubmed
[7]
Kleiner DE, Brunt EM, Van Natta M, Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313–1321.
Pubmed
[8]
Teli MR, James OFW, Burt AD, The natural history of nonalcoholic fatty liver: a follow-up study[J]. Hepatology, 1995, 22(6): 1714–1719.
Pubmed
[9]
Dam-Larsen S,Franzmann M, Andersen IB, Long term prognosis of fatty liver: risk of chronic liver disease and death[J]. Gut, 2004, 53(5): 750–755
Pubmed
[10]
Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1026–1037.
Pubmed
[11]
Guerrero R, Vega GL, Grundy SM, Ethnic differences in hepatic steatosis: an insulin resistance paradox?[J]. Hepatology, 2009, 49(3): 791–801.
Pubmed
[12]
Schwimmer JB, Celedon MA, Lavine JE, Heritability of nonalcoholic fatty liver disease[J]. Gastroenterology, 2009, 136(5): 1585–1592.
Pubmed
[13]
Makkonen J, Pietiläinen KH, Rissanen A, Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins[J]. J Hepatol, 2009, 50(5): 1035–1042.
Pubmed
[14]
Loomba R, Schork N, Chen CH, Heritability of hepatic fibrosis and steatosis based on a prospective twin study[J]. Gastroenterology, 2015, 149(7): 1784–1793.
Pubmed
[15]
Romeo S, Kozlitina J, Xing C, Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2008, 40(12): 1461–1465.
Pubmed
[16]
Singal AG, Manjunath H, Yopp AC, The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis[J]. Am J Gastroenterol, 2014, 109(3): 325–334.
Pubmed
[17]
Speliotes EK. Yerges-Armstrong LM, Wu J, Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits[J]. PLoS Genet, 2011, 7(3): e1001324
Pubmed
[18]
Petta S, Miele L, Bugianesi E, Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease[J]. PLoS One, 2014, 9(2): e87523.
Pubmed
[19]
Kozlitina J, Smagris E, Stender S, Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2014, 46(4): 352–356.
Pubmed
[20]
Liu YL, Reeves HL, Burt AD, TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease[J]. Nat Commun, 2014, 5: 4309.
Pubmed
[21]
Mancina RM, Dongiovanni P, Petta S, The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent[J]. Gastroenterology, 2016, 150(5): 1219–1230.e6.
Pubmed
[22]
Buch S, Stickel F, Trépo E, A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis[J]. Nat Genet, 2015, 47(12): 1443–1448.
Pubmed
[23]
Huang Y, He S, LiJZ, A feed-forward loop amplifies nutritional regulation of PNPLA3[J]. Proc Natl Acad Sci U S A, 2010, 107(17): 7892–7897
Pubmed
[24]
Dubuquoy C, Robichon C, Lasnier F, Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes[J]. J Hepatol, 2011, 55(1): 145–153.
Pubmed
[25]
Kumari M, Schoiswohl G, Chitraju C, Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase[J]. Cell Metab, 2012, 15(5): 691–702.
Pubmed
[26]
Pingitore P, Pirazzi C, Mancina RM, Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function[J]. Biochim Biophys Acta, 2014, 1841(4): 574–580.
[27]
Basantani MK, Sitnick MT, Cai L, Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome[J]. J Lipid Res, 2011, 52(2): 318–329.
Pubmed
[28]
Chen W, Chang B,Li L, Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease[J]. Hepatology, 2010, 52(3): 1134–1142
Pubmed
[29]
He S,McPhaul C, LiJ Z, A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis[J]. J Biol Chem, 2010, 285(9): 6706–6715
Pubmed
[30]
Smagris E,BasuRay S, Li J, Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis[J]. Hepatology, 2015, 61(1): 108–118
Pubmed
[31]
BasuRay S,Smagris E, Cohen JC, The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation[J]. Hepatology, 2017, 66(4): 1111–1124
Pubmed
[32]
Donati B, Motta BM, Pingitore P, The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage[J]. Hepatology, 2016, 63(3): 787–798.
Pubmed
[33]
Pingitore P, Dongiovanni P, Motta BM, PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis[J]. Hum Mol Genet, 2016, 25(23): 5212–5222.
Pubmed
[34]
Bruschi FV, Claudel T, Tardelli M, The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells[J]. Hepatology, 2017, 65(6): 1875–1890.
Pubmed
[35]
Trépo E, Nahon P, Bontempi G, Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data[J]. Hepatology, 2014, 59(6): 2170–2177.
Pubmed
[36]
Valenti L, Alisi A, Galmozzi E, I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease[J]. Hepatology, 2010, 52(4): 1274–1280.
Pubmed
[37]
Valenti L, Rumi M, Galmozzi E, Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C[J]. Hepatology, 2011, 53(3): 791–799.
Pubmed
[38]
Valenti L, Motta BM, Soardo G, PNPLA3 I148M polymorphism, clinical presentation, and survival in patients with hepatocellular carcinoma[J]. PLoS One, 2013, 8(10): e75982.
Pubmed
[39]
Mahdessian H, Taxiarchis A, Popov S, TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content[J]. Proc Natl Acad Sci USA, 2014, 111(24): 8913–8918.
Pubmed
[40]
Smagris E, Gilyard S, BasuRay S, Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins[J].J Biol Chem, 2016, 291(20): 10659–10676
Pubmed
[41]
Milano M, Aghemo A, Mancina RM, Transmembrane 6 superfamily member 2 gene E167K variant impacts on steatosis and liver damage in chronic hepatitis C patients[J]. Hepatology, 2015, 62(1): 111–117.
Pubmed
[42]
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism[J]. Curr Opin Lipidol, 2015, 26(2): 88–95.
Pubmed
[43]
Beer NL, Tribble ND, McCulloch LJ, The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver[J]. Hum Mol Genet, 2009, 18(21): 4081–4088
Pubmed
[44]
Santoro N, Zhang CK, Zhao H, Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents[J]. Hepatology, 2012, 55(3): 781–789.
Pubmed
[45]
Gijón MA, Riekhof WR, Zarini S, Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils[J]. J Biol Chem, 2008, 283(44): 30235–30245.
Pubmed
[46]
Serini S, Piccioni E, Merendino N, Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer[J]. Apoptosis, 2009, 14(2): 135–152.
Pubmed
[47]
Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury[J]. Gut, 2005, 54(7): 1024–1033.
Pubmed
[48]
Luukkonen PK, Zhou Y, Hyötyläinen T, The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans[J]. J Hepatol, 2016, 65(6): 1263–1265.
Pubmed
[49]
Viitasalo A, Eloranta AM, Atalay M, Association of MBOAT7 gene variant with plasma ALT levels in children: the PANIC study[J]. Pediatr Res, 2016, 80(5): 651–655.
Pubmed
[50]
Thabet K,Chan HLY, Petta S, The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B[J].Hepatology, 2017, 65(6): 1840–1850
Pubmed
[51]
Thabet K, Asimakopoulos A, Shojaei M, MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C[J]. Nat Commun, 2016, 7: 12757.
Pubmed
[52]
Donati B, Dongiovanni P, Romeo S, MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals[J]. Sci Rep, 2017, 7(1): 4492.
Pubmed
[53]
Abul-Husn NS,Cheng X, Li AH, A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease[J]. N Engl J Med, 2018, 378(12): 1096–1106
Pubmed
[54]
Su W,Wang Y, Jia X, Comparative proteomic study reveals 17-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease[J]. Proc Natl Acad Sci U S A, 2014, 111(31): 11437–11442
Pubmed
[55]
Kneeman JM, Misdraji J, Corey KE. Secondary causes of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2012, 5(3): 199–207.
Pubmed
[56]
Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia[J]. Curr Opin Lipidol, 2014, 25(3): 161–168.
Pubmed
[57]
Cefalù AB, Pirruccello JP, Noto D, A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia[J]. Arterioscler Thromb Vasc Biol, 2013, 33(8): 2021–2025.
Pubmed
[58]
Kotowski IK, Pertsemlidis A, Luke A, A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol[J]. Am J Hum Genet, 2006, 78(3): 410–422.
Pubmed
[59]
Blom DJ, Hala T, Bolognese M, A 52-week placebo-controlled trial of evolocumab in hyperlipidemia[J]. N Engl J Med, 2014, 370(19): 1809–1819.
Pubmed
[60]
Robinson JG, Farnier M, Krempf M, Efficacy and safety of alirocumab in reducing lipids and cardiovascular events[J]. N Engl J Med, 2015, 372(16): 1489–1499.
Pubmed
[61]
Di Filippo M, Vokaer B, Seidah NG. A case of hypocholesterolemia and steatosis in a carrier of a PCSK9 loss-of-function mutation and polymorphisms predisposing to nonalcoholic fatty liver disease[J]. J Clin Lipidol, 2017, 11(4): 1101–1105.
Pubmed
[62]
Jiang ZG, Liu Y, Hussain MM, Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system[J]. J Mol Biol, 2008, 383(5): 1181–1194.
Pubmed
[63]
Collins JC, Scheinberg IH, Giblin DR, Hepatic peroxisomal abnormalities in abetalipoproteinemia[J]. Gastroenterology, 1989, 97(3): 766–770.
Pubmed
[64]
Braegger CP, Belli DC, Mentha G, Persistence of the intestinal defect in abetalipoproteinaemia after liver transplantation[J]. Eur J Pediatr, 1998, 157(7): 576–578.
Pubmed
[65]
Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide[J]. JAMA Intern Med, 2014, 174(3): 443–447.
Pubmed
[66]
Yao Z, Wang Y. Apolipoprotein C-Ⅲ and hepatic triglyceride-rich lipoprotein production[J]. Curr Opin Lipidol, 2012, 23(3): 206–212.
Pubmed
[67]
Olivieri O, Stranieri C, Bassi A, ApoC-Ⅲ gene polymorphisms and risk of coronary artery disease[J]. J Lipid Res, 2002, 43(9): 1450–1457.
Pubmed
[68]
Guettier JM, Georgopoulos A, Tsai MY, Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-Ⅲ genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population[J]. J Clin Endocrinol Metab, 2005, 90(3): 1705–1711.
Pubmed
[69]
Petersen KF, Dufour S, Hariri A, Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease[J]. N Engl J Med, 2010, 362(12): 1082–1089.
Pubmed
[70]
Kozlitina J, Boerwinkle E, Cohen JC, Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance[J]. Hepatology, 2011, 53(2): 467–474.
Pubmed
[71]
Valenti L, Nobili V, Al-Serri A, The APOC3 T-455C and C-482T promoter region polymorphisms are not associated with the severity of liver damage independently of PNPLA3 I148M genotype in patients with nonalcoholic fatty liver[J]. J Hepatol, 2011, 55(6): 1409–1414
Pubmed
[72]
Liu H, Labeur C, Xu CF, Characterization of the lipid-binding properties and lipoprotein lipase inhibition of a novel apolipoprotein C-Ⅲ variant Ala23Thr[J]. J Lipid Res, 2000, 41(11): 1760–1771
Pubmed
[73]
von Eckardstein A, Holz H, Sandkamp M, Apolipoprotein C-Ⅲ (Lys58----Glu). Identification of an apolipoprotein C-Ⅲ variant in a family with hyperalphalipoproteinemia[J]. J Clin Invest, 1991, 87(5): 1724–1731.
Pubmed
[74]
Pullinger CR, Malloy MJ, Shahidi AK, Hypertriglyceridemia in a large kindred of Mexican origin experimental subjects[J]. J Lipid Res, 1997, 38: 1833–1840.
Pubmed
[75]
Sundaram M, Curtis KR, Alipour MA, The apolipoprotein C-Ⅲ (Gln38Lys) variant associated with human hypertriglyceridemia is a gain-of-function mutation[J]. J Lipid Res,2017, 58(11):2188–2196
[76]
Bell TA, Graham MJ, Baker BF, Therapeutic inhibition of apoC-Ⅲ for the treatment of hypertriglyceridemia[J]. Clin Lipidol, 2015, 10(2):191–203.
[77]
Reiner Ž, Guardamagna O, Nair D, Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction[J]. Atherosclerosis, 2014, 235(1): 21–30.
Pubmed
[78]
Hubbard B, Doege H, Punreddy S, Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity[J]. Gastroenterology, 2006, 130(4): 1259–1269.
Pubmed
[79]
Doege H, Grimm D, Falcon A, Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia[J]. J Biol Chem, 2008, 283(32): 22186–22192.
Pubmed
[80]
Auinger A, Valenti L, Pfeuffer M, A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis[J]. Horm Metab Res, 2010, 42(12): 854–859.
[81]
Reue K, Brindley DN. Thematic review series: glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism[J]. J Lipid Res, 2008, 49(12): 2493–2503.
Pubmed
[82]
Valenti L, Motta BM, Alisi A, LPIN1 rs13412852 polymorphism in pediatric nonalcoholic fatty liver disease[J]. J Pediatr Gastroenterol Nutr, 2012, 54(5): 588–593.
Pubmed
[83]
Caldwell SH, Swerdlow RH, Khan EM, Mitochondrial abnormalities in non-alcoholic steatohepatitis[J]. J Hepatol, 1999, 31(3): 430–434.
Pubmed
[84]
Berardi MJ, Chou JJ. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria[J]. Cell Metab, 2014, 20(3): 541–552.
Pubmed
[85]
Fares R, Petta S, Lombardi R, The UCP2-866 G>A promoter region polymorphism is associated with nonalcoholic steatohepatitis[J]. Liver Int, 2015, 35(5): 1574–1580.
Pubmed
[86]
Al-Serri A, Anstee QM, Valenti L, The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies[J]. J Hepatol, 2012, 56(2): 448–454
Pubmed
[87]
Miele L, Valenza V, La Torre G, Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology, 2009, 49(6): 1877–1887.
Pubmed
[88]
Thomas DL, Thio CL, Martin MP, Genetic variation in IL28B and spontaneous clearance of hepatitis C virus[J]. Nature, 2009, 461(7265): 798–801.
Pubmed
[89]
Petta S, Grimaudo S, Cammà C, IL28B and PNPLA3 polymorphisms affect histological liver damage in patients with non-alcoholic fatty liver disease[J]. J Hepatol, 2012, 56(6): 1356–1362.
Pubmed
[90]
Eslam M, Hashem AM, Leung R, Interferon- rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease[J]. Nat Commun, 2015, 6: 6422.
Pubmed
[91]
Tokushige K, Takakura M, Tsuchiya-Matsushita N, Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis[J]. J Hepatol, 2007, 46(6): 1104–1110
Pubmed
[92]
Valenti L, Fracanzani AL, Dongiovanni P, Tumor necrosis factor α promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease[J]. Gastroenterology, 2002, 122(2): 274–280.
Pubmed
[93]
Pastor IJ, Laso FJ, Romero A, -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men[J]. Alcohol Clin Exp Res, 2005, 29(11): 1928–1931.
Pubmed
[94]
Gochee PA, Jonsson JR, Clouston AD, Steatosis in chronic hepatitis C: association with increased messenger RNA expression of collagen I, tumor necrosis factor-alpha and cytochrome P450 2E1[J]. J Gastroenterol Hepatol, 2003, 18(4): 386–392.
Pubmed
[95]
Petta S, Valenti L, Marra F, MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2016, 64(3): 682–690.
Pubmed
[96]
Rüeger S, Bochud PY, Dufour JF, Impact of common risk factors of fibrosis progression in chronic hepatitis C[J]. Gut, 2015, 64(10): 1605–1615.
Pubmed
[97]
Musso G, Cassader M, De Michieli F, MERTK rs4374383 variant predicts incident nonalcoholic fatty liver disease and diabetes: role of mononuclear cell activation and adipokine response to dietary fat[J]. Hum Mol Genet, 2017, 26(9): 1747–1758.
Pubmed
[98]
Musso G, Cassader M, De Michieli F, Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism[J]. Hepatology, 2012, 56(3): 933–942.
Pubmed
[99]
Dongiovanni P, Valenti L, Rametta R, Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease[J]. Gut, 2010, 59(2): 267–273.
Pubmed
[100]
Bauer RC, Sasaki M, Cohen DM, Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα[J]. J Clin Invest, 2015, 125(10): 3809–3818.
Pubmed
[101]
Ishizuka Y, Nakayama K, Ogawa A, TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions[J]. J Mol Endocrinol, 2014, 52(2): 145–158.
Pubmed
[102]
Kitamoto A, Kitamoto T, Nakamura T, Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits[J]. Endocr J, 2014, 61(7): 683–689.
[103]
Calado RT, Regal JA, Kleiner DE, A spectrum of severe familial liver disorders associate with telomerase mutations[J]. PLoS One, 2009, 4(11): e7926.
Pubmed
[104]
Hartmann D, Srivastava U, Thaler M, Telomerase gene mutations are associated with cirrhosis formation[J]. Hepatology, 2011, 53(5): 1608–1617.
Pubmed
[105]
Aravinthan A, Mells G, Allison M, Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease[J]. Cell Cycle, 2014, 13(9): 1489–1494.
Pubmed
[106]
Aravinthan A, Scarpini C, Tachtatzis P, Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease[J]. J Hepatol, 2013, 58(3): 549–556.
Pubmed
[107]
Ratziu V, Lalazar A, Wong L, Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis[J]. Proc Natl Acad Sci USA, 1998, 95(16): 9500–9505.
Pubmed
[108]
Miele L, Beale G, Patman G, The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease[J]. Gastroenterology, 2008, 135(1): 282–291.e1.
Pubmed
[109]
Bechmann LP, Gastaldelli A, Vetter D, Glucokinase links Krüppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55(4): 1083–1093.
Pubmed
[110]
Lee HJ, Choi JS, Lee HJ, Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction[J]. J Nutr Biochem, 2015, 26(12): 1414–1423.
Pubmed
[111]
Ruddell RG, Hoang-le D, Barwood JM, Ferritin functions as a proinflammatory cytokine via iron-independent PKC-/NFB-regulated signalling in rat hepatic stellate cells[J].Hepatology, 2010, 49(3): 887–900.
Pubmed
[112]
Valenti L, Canavesi E, Galmozzi E, Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease[J]. J Hepatol, 2010, 53(5): 927–933.
Pubmed
[113]
Valenti L, Fracanzani AL, Bugianesi E, HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2010, 138(3): 905–912.
Pubmed
[114]
Valenti L, Rametta R, Dongiovanni P, The A736V TMPRSS6 polymorphism influences hepatic iron overload in nonalcoholic fatty liver disease[J]. PLoS One, 2012, 7(11): e48804.
Pubmed
[115]
Targher G, Byrne CD, Lonardo A, Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis[J]. J Hepatol, 2016, 65(3): 589–600.
Pubmed
[116]
Holmen OL, Zhang H, Fan Y, Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk[J]. Nat Genet, 2014, 46(4): 345–351.
Pubmed
[117]
Simons N, Isaacs A, Koek GH, PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease[J]. Gastroenterology, 2017, 152(4): 912–913.
Pubmed
[118]
Tang CS, Zhang H, Cheung CYY, Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese[J]. Nat Commun, 2015, 6: 10206.
Pubmed
[119]
Kozian DH, Barthel A, Cousin E, Glucokinase-activating GCKR polymorphisms increase plasma levels of triglycerides and free fatty acids, but do not elevate cardiovascular risk in the Ludwigshafen Risk and Cardiovascular Health Study[J]. Horm Metab Res, 2010, 42(7): 502–506.
Pubmed
[120]
Fouchier SW, Defesche JC. Lysosomal acid lipase A and the hypercholesterolaemic phenotype[J]. Curr Opin Lipidol, 2013, 24(4): 332–338.
Pubmed
[121]
Sookoian S, Castaño GO, Scian R, Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity[J]. Hepatology, 2015, 61(2): 515–525.
Pubmed
[122]
Valenti L, Alisi A, Nobili V. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms[J]. Hepatology, 2012, 55(3): 661–663.
Pubmed
[123]
Grarup N, Urhammer SA, Ek J, Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects[J]. Diabetologia, 2006, 49(9): 2097–2104
Pubmed
[124]
Jellema A, Zeegers MPA, Feskens EJM, Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies[J]. Diabetologia, 2003, 46(7): 990–995.
Pubmed
[125]
Musso G, Gambino R, Tabibian JH, Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis[J]. PLoS Med, 2014, 11(7): e1001680.
Pubmed
[126]
Hishida A, Takashima N, Turin TC, GCK, GCKR polymorphisms and risk of chronic kidney disease in Japanese individuals: data from the J-MICC Study[J]. J Nephrol, 2014, 27(2): 143–149.
Pubmed
[127]
Chalasani N, Younossi Z, Lavine JE, The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 67(1): 328–357.
Pubmed
[128]
Nobili V, Donati B, Panera N, A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease[J]. J Pediatr Gastroenterol Nutr, 2014, 58(5): 632–636.
Pubmed
[129]
Eslam M, Hashem AM, Romero-Gomez M, FibroGENE: A gene-based model for staging liver fibrosis[J]. J Hepatol, 2016, 64(2): 390–398
Pubmed
[130]
Hyysalo J, Männistö VT, Zhou Y, A population-based study on the prevalence of NASH using scores validated against liver histology[J]. J Hepatol, 2014, 60(4): 839–846.
Pubmed

Acknowledgment

ZGJ is supported by an Alan Hofmann Clinical and Translational Research Award from AASLD.

RIGHTS & PERMISSIONS

2018 2018 by the Journal of Biomedical Research.
PDF(284 KB)

Accesses

Citations

Detail

Sections
Recommended

/