Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception

Kyriakos E. Kypreos, Eleni A. Karavia, Caterina Constantinou, Aikaterini Hatziri, Christina Kalogeropoulou, Eva Xepapadaki, Evangelia Zvintzou

PDF(242 KB)
PDF(242 KB)
Journal of Biomedical Research ›› 2018, Vol. 32 ›› Issue (3) : 183-190. DOI: 10.7555/JBR.32.20180007
Review Article
Review Article

Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception

Author information +
History +

Abstract

Apolipoprotein E (APOE) is a major protein component of peripheral and brain lipoprotein transport systems. APOE in peripheral circulation does not cross the blood brain barrier or blood cerebrospinal fluid barrier. As a result, peripheral APOE expression does not affect brain APOE levels and vice versa. Numerous epidemiological studies suggest a key role of peripherally expressed APOE in the development and progression of coronary heart disease while brain APOE has been associated with dementia and Alzheimer’s disease. More recent studies, mainly in experimental mice, suggested a link between Apoe and morbid obesity. According to the latest findings, expression of human apolipoprotein E3 (APOE3) isoform in the brain of mice is associated with a potent inhibition of visceral white adipose tissue (WAT) mitochondrial oxidative phosphorylation leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, hepatically expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. These novel findings constitute a major paradigm shift from the widely accepted perception that APOE promotes obesity via receptor-mediated postprandial lipid delivery to WAT. Here, we provide a critical review of the latest facts on the role of APOE in morbid obesity.

Keywords

apolipoprotein E / morbid obesity / white adipose tissue / energy metabolism

Cite this article

Download citation ▾
Kyriakos E. Kypreos, Eleni A. Karavia, Caterina Constantinou, Aikaterini Hatziri, Christina Kalogeropoulou, Eva Xepapadaki, Evangelia Zvintzou. Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception. Journal of Biomedical Research, 2018, 32(3): 183‒190 https://doi.org/10.7555/JBR.32.20180007

References

[1]
Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review[J]. Gerontology, 2012, 58(1): 15–23
Pubmed
[2]
Heeren J, Münzberg H. Novel aspects of brown adipose tissue biology[J]. Endocrinol Metab Clin North Am, 2013, 42(1): 89–107
Pubmed
[3]
Schulz TJ, Tseng YH. Brown adipose tissue: development, metabolism and beyond[J]. Biochem J, 2013, 453(2): 167–178
Pubmed
[4]
Flachs P, Rossmeisl M, Kuda O, Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype[J]. Biochim Biophys Acta, 2013, 1831(5): 986–1003
Pubmed
[5]
Timmons JA, Wennmalm K, Larsson O, Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages[J]. Proc Natl Acad Sci U S A, 2007, 104(11): 4401–4406
Pubmed
[6]
Seale P, Bjork B, Yang W, PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207): 961–967
Pubmed
[7]
Barbatelli G, Murano I, Madsen L, The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation[J]. Am J Physiol Endocrinol Metab, 2010, 298(6): E1244–E1253
Pubmed
[8]
Zannis VI, Breslow JL. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification[J]. Biochemistry, 1981, 20(4): 1033–1041
Pubmed
[9]
Raffai RL, Dong LM, Farese RV Jr, Introduction of human apolipoprotein E4 “domain interaction” into mouse apolipoprotein E[J]. Proc Natl Acad Sci U S A, 2001, 98(20): 11587–11591
Pubmed
[10]
Dong LM, Wilson C, Wardell MR, Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms[J]. J Biol Chem, 1994, 269(35): 22358–22365
Pubmed
[11]
Srivastava RA, Bhasin N, Srivastava N. Apolipoprotein E gene expression in various tissues of mouse and regulation by estrogen[J]. Biochem Mol Biol Int, 1996, 38(1): 91–101
Pubmed
[12]
Smith JD, Melián A, Leff T, Expression of the human apolipoprotein E gene is regulated by multiple positive and negative elements[J]. J Biol Chem, 1988, 263(17): 8300–8308
Pubmed
[13]
Xu Q, Bernardo A, Walker D, Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus[J]. J Neurosci, 2006, 26(19): 4985–4994
Pubmed
[14]
Sun Y, Wu S, Bu G, Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins[J]. J Neurosci, 1998, 18(9): 3261–3272
Pubmed
[15]
Maloney B, Ge YW, Alley GM, Important differences between human and mouse APOE gene promoters: limitation of mouse APOE model in studying Alzheimer’s disease[J]. J Neurochem, 2007, 103(3): 1237–1257
Pubmed
[16]
Constantinou C, Karavia EA, Xepapadaki E, Advances in high density lipoprotein physiology: surprises, overturns and promises[J]. Am J Physiol Endocrinol Metab, 2016, 310(1): E1–E14.
[17]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178–201
Pubmed
[18]
Lehtinen MK, Bjornsson CS, Dymecki SM, The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy[J]. J Neurosci, 2013, 33(45): 17553–17559.
[19]
Dietschy JM, Turley SD. Cholesterol metabolism in the brain[J]. Curr Opin Lipidol, 2001, 12(2): 105–112
Pubmed
[20]
Björkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain[J]. J Intern Med, 2006, 260(6): 493–508
Pubmed
[21]
Linton MF, Gish R, Hubl ST, Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation[J]. J Clin Invest, 1991, 88(1): 270–281
Pubmed
[22]
Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain[J]. Cardiovasc Res, 2014, 103(3): 405–413
Pubmed
[23]
Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease[J]. Annu Rev Neurosci, 1996, 19: 53–77
Pubmed
[24]
Koch S, Donarski N, Goetze K, Characterization of four lipoprotein classes in human cerebrospinal fluid[J]. J Lipid Res, 2001, 42(7): 1143–1151
Pubmed
[25]
Maiti TK, Konar S, Bir S, Role of apolipoprotein E polymorphism as a prognostic marker in traumatic brain injury and neurodegenerative disease: a critical review[J]. Neurosurg Focus, 2015, 39(5): E3
Pubmed
[26]
Zannis VI, Chroni A, Kypreos KE, Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer[J]. Curr Opin Lipidol, 2004, 15(2): 151–166
Pubmed
[27]
Zannis VI, Kypreos KE, Chroni A, Lipoproteins and atherogenesis. In: Loscalzo J, ed. Molecular Mechanisms of Atherosclerosis[M]. New York, NY: Taylor & Francis, 2004: 111–174.
[28]
Havel RJ, Kotite L, Vigne JL, Radioimmunoassay of human arginine-rich apolipoprotein, apoprotein E. Concentration in blood plasma and lipoproteins as affected by apoprotein E-3 deficiency[J]. J Clin Invest, 1980, 66(6): 1351–1362
Pubmed
[29]
Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3[J]. Arterioscler Thromb Vasc Biol, 1999, 19(3): 472–484
Pubmed
[30]
Huang Y, Liu XQ, Rall SC Jr, Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia[J]. J Biol Chem, 1998, 273(41): 26388–26393
Pubmed
[31]
Huang Y, Liu XQ, Rall SC Jr. Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins[J]. J Biol Chem, 1998, 273(28):17483–17490.
[32]
Rensen PC, van Berkel TJ. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo[J]. J Biol Chem, 1996, 271(25): 14791–14799
Pubmed
[33]
Filou S, Lhomme M, Karavia EA, Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function[J]. Biochemistry, 2016, 55(27): 3752–3762
Pubmed
[34]
Kypreos KE, Zannis VI. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT[J]. Biochem J, 2007, 403(2): 359–367
Pubmed
[35]
Utermann G, Hees M, Steinmetz A. Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man[J]. Nature, 1977, 269(5629): 604–607
Pubmed
[36]
Havel RJ, Kane JP. Primary dysbetalipoproteinemia: predominance of a specific apoprotein species in triglyceride-rich lipoproteins[J]. Proc Natl Acad Sci U S A, 1973, 70(7): 2015–2019
Pubmed
[37]
Eichner JE, Dunn ST, Perveen G, Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review[J]. Am J Epidemiol, 2002, 155(6): 487–495
Pubmed
[38]
Wilson PW, Schaefer EJ, Larson MG, Apolipoprotein E alleles and risk of coronary disease. A meta-analysis[J]. Arterioscler Thromb Vasc Biol, 1996, 16(10): 1250–1255
Pubmed
[39]
Plump AS, Smith JD, Hayek T, Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells[J]. Cell, 1992, 71(2): 343–353
Pubmed
[40]
Chiba T, Nakazawa T, Yui K, VLDL induces adipocyte differentiation in ApoE-dependent manner[J]. Arterioscler Thromb Vasc Biol, 2003, 23(8): 1423–1429
Pubmed
[41]
Huang ZH, Reardon CA, Mazzone T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover[J]. Diabetes, 2006, 55(12): 3394–3402
Pubmed
[42]
Hofmann SM, Perez-Tilve D, Greer TM, Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice[J]. Diabetes, 2008, 57(1): 5–12
Pubmed
[43]
Gao J, Katagiri H, Ishigaki Y, Involvement of apolipoprotein E in excess fat accumulation and insulin resistance[J]. Diabetes, 2007, 56(1): 24–33
Pubmed
[44]
Karagiannides I, Abdou R, Tzortzopoulou A, Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice[J]. FEBS J, 2008, 275(19): 4796–4809.
[45]
Zvintzou E, Skroubis G, Chroni A, Effects of bariatric surgery on HDL structure and functionality: results from a prospective trial[J]. J Clin Lipidol, 2014, 8(4): 408–417
Pubmed
[46]
Hofmann SM, Perez-Tilve D, Greer TM, Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice[J]. Diabetes, 2008, 57(1): 5– 12
Pubmed
[47]
Kypreos KE, Teusink B, Van Dijk KW, Analysis of the structure and function relationship of the human apolipoprotein E in vivo, using adenovirus-mediated gene transfer[J]. FASEB J, 2001, 15(9): 1598–1600
Pubmed
[48]
Yamamoto T, Choi HW, Ryan RO. Apolipoprotein E isoform-specific binding to the low-density lipoprotein receptor[J]. Anal Biochem, 2008, 372(2): 222–226
Pubmed
[49]
Ruiz J, Kouiavskaia D, Migliorini M, The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor[J]. J Lipid Res, 2005, 46(8): 1721–1731
Pubmed
[50]
Li X, Kypreos K, Zanni EE, Domains of apoE required for binding to apoE receptor 2 and to phospholipids: implications for the functions of apoE in the brain[J]. Biochemistry, 2003, 42(35): 10406–10417
Pubmed
[51]
Ruiz-Carrilo A, Beato M, Schutz G, Cell-free translation of the globin message within polydisperse high-molecular-weight ribonucleic acid of avian erythrocytes[J]. Proc Natl Acad Sci U S A, 1973, 70(12): 3641–3645
Pubmed
[52]
Schreyer SA, Vick C, Lystig TC, LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice[J]. Am J Physiol Endocrinol Metab, 2002, 282(1): E207–E214
Pubmed
[53]
Karavia EA, Papachristou DJ, Kotsikogianni I, Deficiency in apolipoprotein E has a protective effect on diet-induced nonalcoholic fatty liver disease in mice[J]. FEBS J, 2011, 278(17): 3119–3129
Pubmed
[54]
Hofmann SM, Zhou L, Perez-Tilve D, Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice[J]. J Clin Invest, 2007, 117(11): 3271–3282
Pubmed
[55]
Martens K, Bottelbergs A, Baes M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research[J]. FEBS Lett, 2010, 584(5): 1054–1058
Pubmed
[56]
Jeffery E, Berry R, Church CD, Characterization of Cre recombinase models for the study of adipose tissue[J]. Adipocyte, 2014, 3(3): 206–211.
[57]
Hatziri A, Kalogeropoulou C, Xepapadaki E, Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation[J]. Biochim Biophys Acta, 2018, 1864(2): 471–480
Pubmed
[58]
Liu Q, Zhang J, Zerbinatti C, Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system[J]. PLoS Biol, 2011, 9(1): e1000575
Pubmed
[59]
Arbones-Mainar JM, Johnson LA, Altenburg MK, Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice[J]. Int J Obes (Lond), 2008, 32(10): 1595–1605
Pubmed
[60]
Zaiss AK, Liu Q, Bowen GP, Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors[J]. J Virol, 2002, 76(9): 4580–4590
Pubmed
[61]
Zannis VI, Just PW, Breslow JL. Human apolipoprotein E isoprotein subclasses are genetically determined[J]. Am J Hum Genet, 1981, 33(1): 11–24
Pubmed
[62]
Breslow JL, McPherson J, Nussbaum AL, Identification and DNA sequence of a human apolipoprotein E cDNA clone[J]. J Biol Chem, 1982, 257(24): 14639–14641
Pubmed
[63]
Breslow JL, Zannis VI, SanGiacomo TR, Studies of familial type Ⅲ hyperlipoproteinemia using as a genetic marker the apoE phenotype E2/2[J]. J Lipid Res, 1982, 23(8): 1224–1235
Pubmed
[64]
Zannis VI, Breslow JL, Utermann G, Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes[J]. J Lipid Res, 1982, 23(6): 911–914
Pubmed
[65]
Zannis VI, Breslow JL. Apolipoprotein E[J]. Mol Cell Biochem, 1982, 42(1): 3–20
Pubmed
[66]
Wagner T, Bartelt A, Schlein C, Genetic dissection of tissue-specific apolipoprotein E function for hypercholesterolemia and diet-induced obesity[J]. PLoS One, 2015, 10(12): e0145102
Pubmed
[67]
Kypreos KE, van Dijk KW, van Der Zee A, Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion[J]. J Biol Chem, 2001, 276(23): 19778–19786
Pubmed
[68]
Kypreos KE, van Dijk KW, Havekes LM, Generation of a recombinant apolipoprotein E variant with improved biological functions: hydrophobic residues (LEU-261, TRP-264, PHE-265, LEU-268, VAL-269) of apoE can account for the apoE-induced hypertriglyceridemia[J]. J Biol Chem, 2005, 280(8): 6276–6284
Pubmed
[69]
Drosatos K, Kypreos KE, Zannis VI. Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein[J]. Biochemistry, 2007, 46(33): 9645–9653
Pubmed

Acknowledgments

Dr. Eleni A. Karavia and Ms. Eva Xepapadaki are supported by a Postdoc-Research Scholarship (2017-2019), and a graduate studentship (2017-2019) respectively, both funded by the State Scholarships Foundation (I.K.Y) of Greece.

RIGHTS & PERMISSIONS

2018 2018 by the Journal of Biomedical Research.
PDF(242 KB)

Accesses

Citations

Detail

Sections
Recommended

/