Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception
Kyriakos E. Kypreos, Eleni A. Karavia, Caterina Constantinou, Aikaterini Hatziri, Christina Kalogeropoulou, Eva Xepapadaki, Evangelia Zvintzou
Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception
Apolipoprotein E (APOE) is a major protein component of peripheral and brain lipoprotein transport systems. APOE in peripheral circulation does not cross the blood brain barrier or blood cerebrospinal fluid barrier. As a result, peripheral APOE expression does not affect brain APOE levels and vice versa. Numerous epidemiological studies suggest a key role of peripherally expressed APOE in the development and progression of coronary heart disease while brain APOE has been associated with dementia and Alzheimer’s disease. More recent studies, mainly in experimental mice, suggested a link between Apoe and morbid obesity. According to the latest findings, expression of human apolipoprotein E3 (APOE3) isoform in the brain of mice is associated with a potent inhibition of visceral white adipose tissue (WAT) mitochondrial oxidative phosphorylation leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, hepatically expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. These novel findings constitute a major paradigm shift from the widely accepted perception that APOE promotes obesity via receptor-mediated postprandial lipid delivery to WAT. Here, we provide a critical review of the latest facts on the role of APOE in morbid obesity.
apolipoprotein E / morbid obesity / white adipose tissue / energy metabolism
[1] |
Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review[J]. Gerontology, 2012, 58(1): 15–23
Pubmed
|
[2] |
Heeren J, Münzberg H. Novel aspects of brown adipose tissue biology[J]. Endocrinol Metab Clin North Am, 2013, 42(1): 89–107
Pubmed
|
[3] |
Schulz TJ, Tseng YH. Brown adipose tissue: development, metabolism and beyond[J]. Biochem J, 2013, 453(2): 167–178
Pubmed
|
[4] |
Flachs P, Rossmeisl M, Kuda O,
Pubmed
|
[5] |
Timmons JA, Wennmalm K, Larsson O,
Pubmed
|
[6] |
Seale P, Bjork B, Yang W,
Pubmed
|
[7] |
Barbatelli G, Murano I, Madsen L,
Pubmed
|
[8] |
Zannis VI, Breslow JL. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification[J]. Biochemistry, 1981, 20(4): 1033–1041
Pubmed
|
[9] |
Raffai RL, Dong LM, Farese RV Jr,
Pubmed
|
[10] |
Dong LM, Wilson C, Wardell MR,
Pubmed
|
[11] |
Srivastava RA, Bhasin N, Srivastava N. Apolipoprotein E gene expression in various tissues of mouse and regulation by estrogen[J]. Biochem Mol Biol Int, 1996, 38(1): 91–101
Pubmed
|
[12] |
Smith JD, Melián A, Leff T,
Pubmed
|
[13] |
Xu Q, Bernardo A, Walker D,
Pubmed
|
[14] |
Sun Y, Wu S, Bu G,
Pubmed
|
[15] |
Maloney B, Ge YW, Alley GM,
Pubmed
|
[16] |
Constantinou C, Karavia EA, Xepapadaki E,
|
[17] |
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178–201
Pubmed
|
[18] |
Lehtinen MK, Bjornsson CS, Dymecki SM,
|
[19] |
Dietschy JM, Turley SD. Cholesterol metabolism in the brain[J]. Curr Opin Lipidol, 2001, 12(2): 105–112
Pubmed
|
[20] |
Björkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain[J]. J Intern Med, 2006, 260(6): 493–508
Pubmed
|
[21] |
Linton MF, Gish R, Hubl ST,
Pubmed
|
[22] |
Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain[J]. Cardiovasc Res, 2014, 103(3): 405–413
Pubmed
|
[23] |
Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease[J]. Annu Rev Neurosci, 1996, 19: 53–77
Pubmed
|
[24] |
Koch S, Donarski N, Goetze K,
Pubmed
|
[25] |
Maiti TK, Konar S, Bir S,
Pubmed
|
[26] |
Zannis VI, Chroni A, Kypreos KE,
Pubmed
|
[27] |
Zannis VI, Kypreos KE, Chroni A,
|
[28] |
Havel RJ, Kotite L, Vigne JL,
Pubmed
|
[29] |
Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3[J]. Arterioscler Thromb Vasc Biol, 1999, 19(3): 472–484
Pubmed
|
[30] |
Huang Y, Liu XQ, Rall SC Jr,
Pubmed
|
[31] |
Huang Y, Liu XQ, Rall SC Jr.
|
[32] |
Rensen PC, van Berkel TJ. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo[J]. J Biol Chem, 1996, 271(25): 14791–14799
Pubmed
|
[33] |
Filou S, Lhomme M, Karavia EA,
Pubmed
|
[34] |
Kypreos KE, Zannis VI. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT[J]. Biochem J, 2007, 403(2): 359–367
Pubmed
|
[35] |
Utermann G, Hees M, Steinmetz A. Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man[J]. Nature, 1977, 269(5629): 604–607
Pubmed
|
[36] |
Havel RJ, Kane JP. Primary dysbetalipoproteinemia: predominance of a specific apoprotein species in triglyceride-rich lipoproteins[J]. Proc Natl Acad Sci U S A, 1973, 70(7): 2015–2019
Pubmed
|
[37] |
Eichner JE, Dunn ST, Perveen G,
Pubmed
|
[38] |
Wilson PW, Schaefer EJ, Larson MG,
Pubmed
|
[39] |
Plump AS, Smith JD, Hayek T,
Pubmed
|
[40] |
Chiba T, Nakazawa T, Yui K,
Pubmed
|
[41] |
Huang ZH, Reardon CA, Mazzone T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover[J]. Diabetes, 2006, 55(12): 3394–3402
Pubmed
|
[42] |
Hofmann SM, Perez-Tilve D, Greer TM,
Pubmed
|
[43] |
Gao J, Katagiri H, Ishigaki Y,
Pubmed
|
[44] |
Karagiannides I, Abdou R, Tzortzopoulou A,
|
[45] |
Zvintzou E, Skroubis G, Chroni A,
Pubmed
|
[46] |
Hofmann SM, Perez-Tilve D, Greer TM,
Pubmed
|
[47] |
Kypreos KE, Teusink B, Van Dijk KW,
Pubmed
|
[48] |
Yamamoto T, Choi HW, Ryan RO. Apolipoprotein E isoform-specific binding to the low-density lipoprotein receptor[J]. Anal Biochem, 2008, 372(2): 222–226
Pubmed
|
[49] |
Ruiz J, Kouiavskaia D, Migliorini M,
Pubmed
|
[50] |
Li X, Kypreos K, Zanni EE,
Pubmed
|
[51] |
Ruiz-Carrilo A, Beato M, Schutz G,
Pubmed
|
[52] |
Schreyer SA, Vick C, Lystig TC,
Pubmed
|
[53] |
Karavia EA, Papachristou DJ, Kotsikogianni I,
Pubmed
|
[54] |
Hofmann SM, Zhou L, Perez-Tilve D,
Pubmed
|
[55] |
Martens K, Bottelbergs A, Baes M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research[J]. FEBS Lett, 2010, 584(5): 1054–1058
Pubmed
|
[56] |
Jeffery E, Berry R, Church CD,
|
[57] |
Hatziri A, Kalogeropoulou C, Xepapadaki E,
Pubmed
|
[58] |
Liu Q, Zhang J, Zerbinatti C,
Pubmed
|
[59] |
Arbones-Mainar JM, Johnson LA, Altenburg MK,
Pubmed
|
[60] |
Zaiss AK, Liu Q, Bowen GP,
Pubmed
|
[61] |
Zannis VI, Just PW, Breslow JL. Human apolipoprotein E isoprotein subclasses are genetically determined[J]. Am J Hum Genet, 1981, 33(1): 11–24
Pubmed
|
[62] |
Breslow JL, McPherson J, Nussbaum AL,
Pubmed
|
[63] |
Breslow JL, Zannis VI, SanGiacomo TR,
Pubmed
|
[64] |
Zannis VI, Breslow JL, Utermann G,
Pubmed
|
[65] |
Zannis VI, Breslow JL. Apolipoprotein E[J]. Mol Cell Biochem, 1982, 42(1): 3–20
Pubmed
|
[66] |
Wagner T, Bartelt A, Schlein C,
Pubmed
|
[67] |
Kypreos KE, van Dijk KW, van Der Zee A,
Pubmed
|
[68] |
Kypreos KE, van Dijk KW, Havekes LM,
Pubmed
|
[69] |
Drosatos K, Kypreos KE, Zannis VI. Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein[J]. Biochemistry, 2007, 46(33): 9645–9653
Pubmed
|
/
〈 | 〉 |