Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia
Patrizia Tarugi, Stefano Bertolini, Sebastiano Calandra
Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia
Three members of the angiopoietin-like (ANGPTL) protein family-ANGPTL3, ANGPTL4 and ANGPTL8- are important regulators of plasma lipoproteins. They inhibit the enzyme lipoprotein lipase, which plays a key role in the intravascular lipolysis of triglycerides present in some lipoprotein classes. This review focuses on the role of ANGPTL3 as emerged from the study of genetic variants of Angptl3 gene in mice and humans. Both loss of function genetic variants and inactivation of Angptl3 gene in mice are associated with a marked reduction of plasma levels of triglyceride and cholesterol and an increased activity of lipoprotein lipase and endothelial lipase. In humans with ANGPTL3 deficiency, caused by homozygous loss of function (LOF) variants of Angptl3 gene, the levels of all plasma lipoproteins are greatly reduced. This plasma lipid disorder referred to as familial combined hypolipidemia (FHBL2) does not appear to be associated with distinct pathological manifestations. Heterozygous carriers of LOF variants have reduced plasma levels of total cholesterol and triglycerides and are at lower risk of developing atherosclerotic cardiovascular disease, as compared to non-carriers. These observations have paved the way to the development of strategies to reduce the plasma level of atherogenic lipoproteins in man by the inactivation of ANGPTL3, using either a specific monoclonal antibody or anti-sense oligonucleotides.
angiopoietin-like protein 3 / ANGPTL3 deficiency / loss of function variants / FHBL2
[1] |
Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism[J]. Trends Cardiovasc Med, 2008, 18(1): 6–14
Pubmed
|
[2] |
Santulli G. Angiopoietin-like proteins: a comprehensive look[J]. Front Endocrinol (Lausanne), 2014, 5: 4
Pubmed
|
[3] |
Mattijssen F, Kersten S. Regulation of triglyceride metabolism by angiopoietin-like proteins[J]. Biochim Biophys Acta, 2012, 1821(5): 782–789.
|
[4] |
Zhang R. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking[J]. Open Biol, 2016, 6(4): 150272
Pubmed
|
[5] |
Kersten S. Physiological regulation of lipoprotein lipase[J]. Biochim Biophys Acta, 2014, 1841(7): 919–933.
|
[6] |
Dijk W, Kersten S. Regulation of lipid metabolism by angiopoietin-like proteins[J]. Curr Opin Lipidol, 2016, 27(3): 249–256
Pubmed
|
[7] |
Koishi R, Ando Y, Ono M,
Pubmed
|
[8] |
Shimizugawa T, Ono M, Shimamura M,
Pubmed
|
[9] |
Fujimoto K, Koishi R, Shimizugawa T,
Pubmed
|
[10] |
Köster A, Chao YB, Mosior M,
Pubmed
|
[11] |
Musunuru K, Pirruccello JP, Do R,
Pubmed
|
[12] |
Minicocci I, Montali A, Robciuc MR,
Pubmed
|
[13] |
Robciuc MR, Maranghi M, Lahikainen A,
Pubmed
|
[14] |
Pisciotta L, Favari E, Magnolo L,
Pubmed
|
[15] |
Martín-Campos JM, Roig R, Mayoral C,
Pubmed
|
[16] |
Noto D, Cefalù AB, Valenti V,
Pubmed
|
[17] |
Minicocci I, Santini S, Cantisani V,
Pubmed
|
[18] |
Perk J, De Backer G, Gohlke H,
Pubmed
|
[19] |
Minicocci I, Cantisani V, Poggiogalle E,
Pubmed
|
[20] |
Tarugi P, Averna M. Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum[J]. Adv Clin Chem, 2011, 54: 81–107
Pubmed
|
[21] |
Di Costanzo A, Di Leo E, Noto D,
Pubmed
|
[22] |
Kathiresan S, Melander O, Guiducci C,
Pubmed
|
[23] |
Teslovich TM, Musunuru K, Smith AV,
Pubmed
|
[24] |
Romeo S, Yin W, Kozlitina J,
Pubmed
|
[25] |
Dewey FE, Gusarova V, Dunbar RL,
Pubmed
|
[26] |
Stitziel NO, Khera AV, Wang X,
Pubmed
|
[27] |
Ono M, Shimizugawa T, Shimamura M,
Pubmed
|
[28] |
Quagliarini F, Wang Y, Kozlitina J,
Pubmed
|
[29] |
Haller JF, Mintah IJ, Shihanian LM,
Pubmed
|
[30] |
Peloso GM, Auer PL, Bis JC,
Pubmed
|
[31] |
Chi X, Britt EC, Shows HW,
Pubmed
|
[32] |
Shan L, Yu XC, Liu Z,
Pubmed
|
[33] |
Liu J, Afroza H, Rader DJ,
Pubmed
|
[34] |
Shimamura M, Matsuda M, Yasumo H,
Pubmed
|
[35] |
Gusarova V, Alexa CA, Wang Y,
Pubmed
|
[36] |
Shimamura M, Matsuda M, Ando Y,
Pubmed
|
[37] |
Inukai K, Nakashima Y, Watanabe M,
Pubmed
|
[38] |
Nidhina Haridas PA, Soronen J, Sädevirta S,
Pubmed
|
[39] |
Muniyappa R, Abel BS, Asthana A,
Pubmed
|
[40] |
Moon HS, Dalamaga M, Kim SY,
Pubmed
|
[41] |
Ito M, Takamatsu J, Matsuo T,
Pubmed
|
[42] |
Johansson L, Rudling M, Scanlan TS,
Pubmed
|
[43] |
Fugier C, Tousaint JJ, Prieur X,
Pubmed
|
[44] |
Joseph SB, Laffitte BA, Patel PH,
Pubmed
|
[45] |
Inaba T, Matsuda M, Shimamura M,
Pubmed
|
[46] |
Kaplan R, Zhang T, Hernandez M,
Pubmed
|
[47] |
Khovidhunkit W, Kim MS, Memon RA,
Pubmed
|
[48] |
Lu B, Moser A, Shigenaga JK,
Pubmed
|
[49] |
Minicocci I, Tikka A, Poggiogalle E,
Pubmed
|
[50] |
Wang Y, Gusarova V, Banfi S,
Pubmed
|
[51] |
Ando Y, Shimizugawa T, Takeshita S,
Pubmed
|
[52] |
Xu YX, Redon V, Yu H,
CrossRef
Pubmed
Google scholar
|
[53] |
Stejskal D, Karpísek M, Humenanská V,
Pubmed
|
[54] |
Robciuc MR, Tahvanainen E, Jauhiainen M,
Pubmed
|
[55] |
Hatsuda S, Shoji T, Shinohara K,
Pubmed
|
[56] |
Mehta N, Qamar A, Qu L,
Pubmed
|
[57] |
Fazio S, Minnier J, Shapiro MD,
Pubmed
|
[58] |
Gaudet D, Gipe DA, Pordy R,
Pubmed
|
[59] |
Graham MJ, Lee RG, Brandt TA,
Pubmed
|
/
〈 | 〉 |