Transforming growth factor-β signaling in systemic sclerosis
Nolan B. Ayers, Chenming Sun, Shi-You Chen
Transforming growth factor-β signaling in systemic sclerosis
Systemic sclerosis (SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific immune system, resulting in autoantibody production, vascular endothelial activation of small blood vessels, and tissue fibrosis as a result of fibroblast dysfunction. Given the heterogeneity of clinical presentation of the disease, a lack of universal models has impeded adequate testing of potential therapies for SSc. Regardless, recent research has elucidated the roles of various ubiquitous molecular mechanisms that contribute to the clinical manifestation of the disease. Transforming growth factor β (TGF-β) has been identified as a regulator of pathological fibrogenesis in SSc. Various processes, including cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated by TGF-β, a type of cytokine secreted by macrophages and many other cell types. Understanding the essential role TGF-β pathways play in the pathology of systemic sclerosis could provide a potential outlet for treatment and a better understanding of this severe disease.
systemic sclerosis / transforming growth factor-β / mechanism / therapeutics
[1] |
Bernatsky S, Joseph L, Pineau CA,
Pubmed
|
[2] |
Katsumoto TR, Whitfield ML, Connolly MK. The pathogenesis of systemic sclerosis[J]. Annu Rev Pathol, 2011, 6: 509–537
Pubmed
|
[3] |
Denton CP. Advances in pathogenesis and treatment of systemic sclerosis[J]. Clin Med (Lond), 2016, 16(1): 55–60
Pubmed
|
[4] |
Koenig M, Joyal F, Fritzler MJ,
Pubmed
|
[5] |
Pattanaik D, Brown M, Postlethwaite BC,
Pubmed
|
[6] |
van den Hoogen F, Khanna D, Fransen J,
Pubmed
|
[7] |
Domsic RT. Scleroderma: the role of serum autoantibodies in defining specific clinical phenotypes and organ system involvement[J]. Curr Opin Rheumatol, 2014, 26(6): 646–652
Pubmed
|
[8] |
Xu D, Hou Y, Zheng Y,
Pubmed
|
[9] |
Asano Y. Recent advances in animal models of systemic sclerosis[J]. J Dermatol, 2016, 43(1): 19–28
Pubmed
|
[10] |
Ghosh AK, Bhattacharyya S, Lafyatis R,
Pubmed
|
[11] |
Sato S. Understanding the pathogenesis and developing new therapy of systemic sclerosis[J]. J Dermatol, 2016, 43(1): 9
Pubmed
|
[12] |
Shanmugam VK, Swistowski DR, Saddic N,
Pubmed
|
[13] |
Sato S, Fujimoto M, Hasegawa M,
Pubmed
|
[14] |
Yoshizaki A, Sato S. Abnormal B lymphocyte activation and function in systemic sclerosis[J]. Ann Dermatol, 2015, 27(1): 1–9
Pubmed
|
[15] |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958–969
Pubmed
|
[16] |
Schultze JL, Schmidt SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27(6): 416–423
Pubmed
|
[17] |
Raes G, Beschin A, Ghassabeh GH,
Pubmed
|
[18] |
Gong D, Shi W, Yi SJ,
Pubmed
|
[19] |
Duffy L, O’Reilly SC. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments[J]. Immunotargets Ther, 2016, 5: 69–80
Pubmed
|
[20] |
Lester SN, Li K. Toll-like receptors in antiviral innate immunity[J]. J Mol Biol, 2014, 426(6): 1246–1264
Pubmed
|
[21] |
Bhattacharyya S, Kelley K, Melichian DS,
Pubmed
|
[22] |
Andreakos E, Foxwell B, Feldmann M. Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation[J]? Immunol Rev, 2004, 202: 250–265
Pubmed
|
[23] |
Dowson C, Simpson N, Duffy L,
Pubmed
|
[24] |
Takeda K, Akira S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17(1): 1–14
Pubmed
|
[25] |
Wei J, Bhattacharyya S, Tourtellotte WG,
Pubmed
|
[26] |
Fullard N, O’Reilly S. Role of innate immune system in systemic sclerosis[J]. Semin Immunopathol, 2015, 37(5): 511–517
Pubmed
|
[27] |
Lakota K, Carns M, Podlusky S,
Pubmed
|
[28] |
Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis[J]. J Dermatol, 2010, 37(1): 11–25
Pubmed
|
[29] |
Komai-Koma M, Li D, Wang E,
Pubmed
|
[30] |
Mayes MD. Systemic Sclerosis[J]. Rheum Dis Clin North Am, 2015, 41(3): xv–xvi
Pubmed
|
[31] |
Baron M. Targeted therapy in systemic sclerosis[J]. Rambam Maimonides Med J, 2016, 7(4): e0030
Pubmed
|
[32] |
Trojanowska M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis[J]. Nat Rev Rheumatol, 2010, 6(8): 453–460
Pubmed
|
[33] |
Aringer M, Erler A. Recent advances in managing systemic sclerosis[J]. F1000Res, 2017, 6: 88
Pubmed
|
[34] |
Kumar S, Singh J, Rattan S,
Pubmed
|
[35] |
Liakouli V, Cipriani P, Marrelli A,
Pubmed
|
[36] |
Mazzotta C, Manetti M, Rosa I,
Pubmed
|
[37] |
Nicolosi PA, Tombetti E, Maugeri N,
|
[38] |
Jarad M, Kuczynski EA, Morrison J,
Pubmed
|
[39] |
Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis[J]. Circ Res, 2008, 102(6): 637–652
Pubmed
|
[40] |
Lafyatis R. Transforming growth factor β--at the centre of systemic sclerosis[J]. Nat Rev Rheumatol, 2014, 10(12): 706–719
Pubmed
|
[41] |
Shiwen X, Leask A, Abraham DJ,
Pubmed
|
[42] |
Kavian N, Batteux F. Macro- and microvascular disease in systemic sclerosis[J]. Vascul Pharmacol, 2015, 71: 16–23
Pubmed
|
[43] |
Avouac J, Vallucci M, Smith V,
Pubmed
|
[44] |
Tsujino K, Reed NI, Atakilit A,
Pubmed
|
[45] |
Baraut J, Farge D, Jean-Louis F,
Pubmed
|
[46] |
Ciechomska M, van Laar J, O’Reilly S. Current frontiers in systemic sclerosis pathogenesis[J]. Exp Dermatol, 2015, 24(6): 401–406
Pubmed
|
[47] |
Denton CP. Advances in pathogenesis and treatment of systemic sclerosis[J]. Clin Med (Lond), 2015, 15(Suppl 6): s58–s63
Pubmed
|
[48] |
Pang N, Zhang F, Ma X,
Pubmed
|
[49] |
Yung LM, Nikolic I, Paskin-Flerlage SD,
Pubmed
|
[50] |
Graham BB, Chabon J, Gebreab L,
Pubmed
|
[51] |
Artlett CM. Animal models of systemic sclerosis: their utility and limitations[J]. Open Access Rheumatol, 2014, 6: 65–81
Pubmed
|
[52] |
Varga J. Systemic sclerosis: an update[J]. Bull NYU Hosp Jt Dis, 2008, 66(3): 198–202
Pubmed
|
[53] |
Maurer B, Reich N, Juengel A,
Pubmed
|
[54] |
Noda S, Asano Y, Nishimura S,
Pubmed
|
[55] |
Asano Y, Bujor AM, Trojanowska M. The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis[J]. J Dermatol Sci, 2010, 59(3): 153–162
Pubmed
|
[56] |
Whitfield ML, Finlay DR, Murray JI,
Pubmed
|
[57] |
Asano Y, Sato S. Animal models of scleroderma: current state and recent development[J]. Curr Rheumatol Rep, 2013, 15(12): 382
Pubmed
|
[58] |
Ishikawa H, Takeda K, Okamoto A,
Pubmed
|
[59] |
Liang M, Lv J, Zou L,
Pubmed
|
[60] |
Avouac J, Borderie D, Ekindjian OG,
Pubmed
|
[61] |
Servettaz A, Goulvestre C, Kavian N,
Pubmed
|
[62] |
Yoshizaki A, Yanaba K, Ogawa A,
Pubmed
|
[63] |
Massagué J. TGFβ signalling in context[J]. Nat Rev Mol Cell Biol, 2012, 13(10): 616–630
Pubmed
|
[64] |
Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis[J]. Semin Immunopathol, 2015, 37(5): 543–557
Pubmed
|
[65] |
Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses[J]. J Cell Biochem, 2007, 102(3): 593–608
Pubmed
|
[66] |
Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclerosis (scleroderma)[J]. Front Biosci (Schol Ed), 2009, 1: 226–235
Pubmed
|
[67] |
Pang L, Li Q, Wei C,
Pubmed
|
[68] |
Pang K, Ryan JF, Baxevanis AD,
Pubmed
|
[69] |
Samarakoon R, Overstreet JM, Higgins SP,
Pubmed
|
[70] |
Kavsak P, Rasmussen RK, Causing CG,
Pubmed
|
[71] |
Zhou B, Zhu H, Luo H,
Pubmed
|
[72] |
Luo H, Zhu H, Zhou B,
Pubmed
|
[73] |
Zhu H, Luo H, Li Y,
Pubmed
|
[74] |
Zhu H, Li Y, Qu S,
Pubmed
|
[75] |
Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations[J]. Lab Invest, 2007, 87(11): 1077–1091
Pubmed
|
[76] |
Ihn H, Yamane K, Tamaki K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts[J]. J Invest Dermatol, 2005, 125(2): 247–255
Pubmed
|
[77] |
Leask A. Towards an anti-fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment[J]. Fibrogenesis Tissue Repair, 2010, 3: 8
Pubmed
|
[78] |
Zhang YE. Non-Smad pathways in TGF-beta signaling[J]. Cell Res, 2009, 19(1): 128–139
Pubmed
|
[79] |
Galliher AJ, Schiemann WP. Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion[J]. Cancer Res, 2007, 67(8): 3752–3758
Pubmed
|
[80] |
Gu AD, Wang Y, Lin L,
Pubmed
|
[81] |
Huang T, David L, Mendoza V,
Pubmed
|
[82] |
Landström M. The TAK1-TRAF6 signalling pathway[J]. Int J Biochem Cell Biol, 2010, 42(5): 585–589
Pubmed
|
[83] |
Sorrentino A, Thakur N, Grimsby S,
Pubmed
|
[84] |
Freudlsperger C, Bian Y, Contag Wise S,
Pubmed
|
[85] |
Yan X, Chen YG. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling[J]. Biochem J, 2011, 434(1): 1–10
Pubmed
|
[86] |
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325–338
Pubmed
|
[87] |
Shi-Wen X, Rodríguez-Pascual F, Lamas S,
Pubmed
|
[88] |
Leask A, Denton CP, Abraham DJ. Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma[J]. J Invest Dermatol, 2004, 122(1): 1–6
Pubmed
|
[89] |
Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response[J]. FASEB J, 2004, 18(7): 816–827
Pubmed
|
[90] |
Shi-Wen X, Chen Y, Denton CP,
Pubmed
|
[91] |
Rajkumar VS, Howell K, Csiszar K,
Pubmed
|
[92] |
Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder[J]. J Clin Invest, 2007, 117(3): 557–567
Pubmed
|
[93] |
Zhang YE. Non-smad signaling pathways of the TGF-β family[J]. Cold Spring Harb Perspect Biolv, 2017, 9(2): a022129
Pubmed
|
[94] |
Hasan M, Neumann B, Haupeltshofer S,
Pubmed
|
[95] |
Elisa T, Antonio P, Giuseppe P,
|
[96] |
Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing[J]. EMBO Rep, 2010, 11(2): 97–105
Pubmed
|
[97] |
Weisman MH. Systemic Sclerosis[J]. Rheum Dis Clin North Am, 2015, 41(3): xiii
Pubmed
|
[98] |
Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis[J]. Nat Rev Rheumatol, 2009, 5(4): 200–206
Pubmed
|
[99] |
Rice LM, Padilla CM, McLaughlin SR,
Pubmed
|
[100] |
Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis[J]. Curr Rheumatol Rep, 2006, 8(2): 145–150
Pubmed
|
[101] |
Zeisberg EM, Tarnavski O, Zeisberg M,
Pubmed
|
[102] |
Medici D, Potenta S, Kalluri R. Transforming growth factor-β2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling[J]. Biochem J, 2011, 437(3): 515–520
Pubmed
|
[103] |
Ghosh AK, Bradham WS, Gleaves LA,
Pubmed
|
[104] |
Li J, Qu X, Yao J,
Pubmed
|
[105] |
Mu Y, Sundar R, Thakur N,
Pubmed
|
/
〈 | 〉 |