Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting

Ze Li, Hai-Yuan Yang, Ying Wang, Man-Ling Zhang, Xiao-Rui Liu, Qiang Xiong, Li-Ning Zhang, Yong Jin, Li-Sha Mou, Yan Liu, Rong-Feng Li, Yi Rao, Yi-Fan Dai

PDF(304 KB)
PDF(304 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (5) : 445-452. DOI: 10.7555/JBR.31.20170026
Original Article
Original Article

Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting

Author information +
History +

Abstract

Unbalanced brain serotonin (5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2 (TPH2). In the present study, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system was used to target theTph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at 38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer (SCNT) and 10Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth. However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. TheseTph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.

Keywords

CRISPR/Cas9 / tryptophan hydroxylase-2 gene / serotonin / Bama mini pigs

Cite this article

Download citation ▾
Ze Li, Hai-Yuan Yang, Ying Wang, Man-Ling Zhang, Xiao-Rui Liu, Qiang Xiong, Li-Ning Zhang, Yong Jin, Li-Sha Mou, Yan Liu, Rong-Feng Li, Yi Rao, Yi-Fan Dai. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. Journal of Biomedical Research, 2017, 31(5): 445‒452 https://doi.org/10.7555/JBR.31.20170026

References

[1]
Walther DJ, Bader  M. A unique central tryptophan hydroxylase isoform[J]. Biochem Pharmacol, 2003, 66(9): 1673–1680
Pubmed
[2]
Walther DJ, Peter  JU, Bashammakh S , Synthesis of serotonin by a second tryptophan hydroxylase isoform[J]. Science, 2003, 299(5603): 76–76
Pubmed
[3]
Côté F ,  Thévenot E ,  Fligny C , Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function[J]. Proc Natl Acad Sci U S A, 2003, 100(23): 13525–13530
Pubmed
[4]
Malek ZS, Dardente  H, Pevet P , Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles[J]. Eur J Neurosci, 2005, 22(4): 895–901
Pubmed
[5]
McKinney J, Knappskog  PM, Haavik J . Different properties of the central and peripheral forms of human tryptophan hydroxylase[J]. J Neurochem, 2005, 92(2): 311–320
Pubmed
[6]
Nakamura K, Sugawara  Y, Sawabe K , Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels[J]. J Neurosci, 2006, 26(2): 530–534
Pubmed
[7]
Zill P, Büttner  A, Eisenmenger W , Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study[J]. J Psychiatr Res, 2007, 41(1-2): 168–173
Pubmed
[8]
Abumaria N, Ribic  A, Anacker C , Stress upregulates TPH1 but not TPH2 mRNA in the rat dorsal raphe nucleus: identification of two TPH2 mRNA splice variants[J]. Cell Mol Neurobiol, 2008, 28(3): 331–342
Pubmed
[9]
Cichon S, Winge  I, Mattheisen M , Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5′-region are associated with bipolar affective disorder[J]. Hum Mol Genet, 2008, 17(1): 87–97
Pubmed
[10]
Gutknecht L, Kriegebaum  C, Waider J , Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice[J]. Eur Neuropsychopharmacol, 2009, 19(4): 266–282
Pubmed
[11]
Migliarini S, Pacini  G, Pelosi B , Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation[J]. Mol Psychiatry, 2013, 18(10): 1106–1118
Pubmed
[12]
Gutknecht L, Jacob  C, Strobel A , Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation[J]. Int J Neuropsychopharmacol, 2007, 10(3): 309–320
Pubmed
[13]
Leppänen JM, Peltola  MJ, Puura K , Serotonin and early cognitive development: variation in the tryptophan hydroxylase 2 gene is associated with visual attention in 7-month-old infants[J]. J Child Psychol Psychiatry, 2011, 52(11): 1144–1152
Pubmed
[14]
Lin CH, Tseng  YL, Huang CL , Synergistic effects of COMT and TPH2 on social cognition[J]. Psychiatry, 2013, 76(3): 273–294
Pubmed
[15]
Baehne CG, Ehlis  AC, Plichta MM , Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals[J]. Mol Psychiatry, 2009, 14(11): 1032–1039
Pubmed
[16]
Campos SB, Miranda  DM, Souza BR , Association study of tryptophan hydroxylase 2 gene polymorphisms in bipolar disorder patients with panic disorder comorbidity[J]. Psychiatr Genet, 2011, 21(2): 106–111
Pubmed
[17]
Gutknecht L, Waider  J, Kraft S , Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice[J]. J Neural Transm (Vienna), 2008, 115(8): 1127–1132
Pubmed
[18]
Savelieva KV, Zhao  S, Pogorelov VM , Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants[J]. PLoS One, 2008, 3(10): e3301
Pubmed
[19]
Alenina N, Kikic  D, Todiras M , Growth retardation and altered autonomic control in mice lacking brain serotonin[J]. Proc Natl Acad Sci U S A, 2009, 106(25): 10332–10337
Pubmed
[20]
Yadav VK, Oury  F, Suda N , A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure[J]. Cell, 2009, 138(5): 976–989
Pubmed
[21]
Pelosi B, Pratelli  M, Migliarini S , Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin[J]. PLoS One, 2015, 10(8): e0136422
Pubmed
[22]
Heils A, Teufel  A, Petri S , Allelic variation of human serotonin transporter gene expression[J]. J Neurochem, 1996, 66(6): 2621–2624
Pubmed
[23]
Waterston RH, Lindblad-Toh  K, Birney E , , and the Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520–562
Pubmed
[24]
Aigner B, Renner  S, Kessler B , Transgenic pigs as models for translational biomedical research[J]. J Mol Med (Berl), 2010, 88(7): 653–664
Pubmed
[25]
Al-Mashhadi RH, Sørensen  CB, Kragh PM , Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant[J]. Sci Transl Med, 2013, 5(166): 166ra1
Pubmed
[26]
Han K, Liang  L, Li L , Generation of Hoxc13 knockout pigs recapitulates human ectodermal dysplasia-9[J]. Hum Mol Genet, 2017, 26 (1): 184–191
Pubmed
[27]
Lind NM, Moustgaard  A, Jelsing J , The use of pigs in neuroscience: modeling brain disorders[J]. Neurosci Biobehav Rev, 2007, 31(5): 728–751
Pubmed
[28]
White E, Woolley  M, Bienemann A , A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model[J]. J Neurosci Methods, 2011, 195(1): 78–87
Pubmed
[29]
Adcock SJJ, Martin  GM, Walsh CJ . The stress response and exploratory behaviour in Yucatan minipigs (Sus scrofa): Relations to sex and social rank[J]. Physiol Behav, 2015, 152(Pt A): 194–202
Pubmed
[30]
Wang H, Yang  H, Shivalila CS , One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome  engineering[J].  Cell,  2013, 153(4):  910–918
Pubmed
[31]
Yuan L, Sui  T, Chen M , CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep, 2016, 6: 22024
Pubmed
[32]
Crispo M, Mulet  AP, Tesson L , Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes[J]. PLoS One, 2015, 10(8): e0136690
Pubmed
[33]
Hai T, Teng  F, Guo R , One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res, 2014, 24(3): 372–375
Pubmed
[34]
Zhou X, Xin  J, Fan N , Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci, 2015, 72(6): 1175–1184
Pubmed
[35]
Chen F, Wang  Y, Yuan Y , Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting[J]. J Genet Genomics, 2015, 42(8): 437–444
Pubmed
[36]
Shen B, Zhang  J, Wu H , Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5): 720–723
Pubmed
[37]
Fu Y, Foden  JA, Khayter C , High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822–826
Pubmed
[38]
Pattanayak V, Lin  S, Guilinger JP , High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31(9): 839–843
Pubmed

Acknowledgment

This work was supported by a grant from the National Natural Science Foundation of China (No. 81570402), a grant from the Jiangsu Key Laboratory of Xenotransplantation (BM2012116), and grants from the Sanming Project of Medicine in Shenzhen, the Fund for High Level Medical Discipline Construction of Shenzhen (No. 2016031638), and the Shenzhen Foundation of Science and Technology (No. JCYJ20160229204849-975 and GCZX2015043017281705), and grant from the National Basic Research Program of China (2015CB55-9200).

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved.
PDF(304 KB)

Accesses

Citations

Detail

Sections
Recommended

/