Profiles of metabolic gene expression in the white adipose tissue, liver and hypothalamus in leptin knockout (LepΔI14/ΔI14 ) rats
Leijian Guan, Kaixuan Xu, Shuyang Xu, Ningning Li, Xinru Wang, Yankai Xia, Di Wu
Profiles of metabolic gene expression in the white adipose tissue, liver and hypothalamus in leptin knockout (LepΔI14/ΔI14 ) rats
Leptin deficiency is principally linked to metabolic disorders. Leptin knockout (LepΔI14/ΔI14) Sprague Dawley rats created by CRISPR/Cas9 is a new model to study metabolic disorders. We used a whole rat genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of the white adipose tissue, liver and hypothalamus inLepΔI14/ΔI14 and wild-type (WT) rats. We found 1,651 differentially expressed (enriched) genes in white adipose tissue, 916 in the liver, and 306 in the hypothalamus in theLepΔI14/ΔI14 rats compared to WT. Gene ontology category and KEGG pathway analysis of the relationships among differentially expressed genes showed that these genes were represented in a variety of functional categories, including fatty acid metabolism, molecular transducers and cellular processes. The reliability of the data obtained from microarray was verified by quantitative real-time PCR on 14 representative genes. These data will contribute to a greater understanding of different metabolic disorders, such as obesity and diabetes.
LepΔI14/ΔI14 / microarray analysis / white adipose / liver / hypothalamus
[1] |
Narayan KM, Boyle JP, Thompson TJ ,
Pubmed
|
[2] |
Fernéndez-Formoso G , Párez-Sieira S , González-Touceda D ,
Pubmed
|
[3] |
Bouyer K, Simerly RB. Neonatal leptin exposure specifies innervation of presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient mice[J]. J Neurosci, 2013, 33(2): 840–851
Pubmed
|
[4] |
Xu J, Donepudi AC, More VR ,
Pubmed
|
[5] |
Perfield JW 2nd, Ortinau LC, Pickering RT,
Pubmed
|
[6] |
Rodríguez A , Moreno NR , Balaguer I ,
Pubmed
|
[7] |
Zhang W, Ambati S, Della-Fera MA ,
Pubmed
|
[8] |
Sennello JA, Fayad R, Pini M ,
Pubmed
|
[9] |
Wang B, Chandrasekera PC, Pippin JJ . Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes[J]. Curr Diabetes Rev, 2014, 10(2): 131–145
Pubmed
|
[10] |
Holmström MH, Tom RZ, Björnholm M ,
Pubmed
|
[11] |
Hao Z, Münzberg H, Rezai-Zadeh K ,
Pubmed
|
[12] |
Vaira S, Yang C, McCoy A ,
Pubmed
|
[13] |
Xu S, Zhu X, Li H ,
Pubmed
|
[14] |
Cong L, Ran FA, Cox D ,
Pubmed
|
[15] |
Wang H, Yang H, Shivalila CS ,
Pubmed
|
[16] |
Swanson LW. Brain Maps: Structure of the Rat Brain. 3rd ed. Academic Press. (2003).
|
[17] |
Srivastava VK, Hiney JK, Dees WL . Short-term alcohol administration alters KiSS-1 gene expression in the reproductive hypothalamus of prepubertal female rats[J]. Alcohol Clin Exp Res, 2009, 33(9): 1605–1614
Pubmed
|
[18] |
Guo Y, Guo H, Zhang L ,
Pubmed
|
[19] |
Patterson TA, Lobenhofer EK, Fulmer-Smentek SB ,
Pubmed
|
[20] |
Alexa A, Rahnenführer J, Lengauer T . Improved scoring of functional groups from gene expression data by decorrelating GO graph structure[J]. Bioinformatics, 2006, 22(13): 1600–1607
Pubmed
|
[21] |
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society Series., 1995, 57: 289–300.
|
[22] |
Lagor WR, Fields DW, Khetarpal SA ,
Pubmed
|
[23] |
Singhal NS, Patel RT, Qi Y ,
Pubmed
|
[24] |
Dinh CH, Szabo A, Yu Y ,
Pubmed
|
[25] |
Zhang X, Hu D, Zhang C ,
Pubmed
|
[26] |
Bao D, Ma Y, Zhang X ,
Pubmed
|
[27] |
Bray GA. The Zucker-fatty rat: a review[J]. Fed Proc, 1977, 36(2): 148–153
Pubmed
|
[28] |
Duan J, Choi YH, Hartzell D ,
Pubmed
|
[29] |
Zhao M, Li X, Qu H . EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder[J]. Sci China Life Sci, 2013, 56(12): 1086–1096
Pubmed
|
[30] |
Ducy P, Karsenty G. The family of bone morphogenetic proteins[J]. Kidney Int, 2000, 57(6): 2207–2214
Pubmed
|
[31] |
Takeda S, Elefteriou F, Levasseur R ,
Pubmed
|
[32] |
Aizawa-Abe M, Ebihara K, Ebihara C ,
Pubmed
|
[33] |
Turenius CI, Htut MM, Prodon DA ,
Pubmed
|
[34] |
Duan J, Choi YH, Hartzell D ,
Pubmed
|
[35] |
Marcelin G, Liu SM, Li X ,
Pubmed
|
[36] |
Altintas MM, Nayer B, Walford EC ,
Pubmed
|
[37] |
Koziński K, Dobrzyń A. Wnt signaling pathway--its role in regulation of cell metabolism[J]. Postepy Hig Med Dosw (Online), 2013, 67: 1098–1108
Pubmed
|
[38] |
Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism[J]? Mol Cell Biol, 2015, 35(1): 2–10
Pubmed
|
[39] |
Gao SC, Yin HB, Liu HX ,
Pubmed
|
[40] |
Martínez-Soto D , Ruiz-Herrera J . Regulation of the expression of the whole genome of Ustilago maydis by a MAPK pathway[J]. Arch Microbiol, 2015, 197(4): 575–588.
Pubmed
|
[41] |
Xu D, Yin C, Wang S ,
Pubmed
|
/
〈 | 〉 |