Immune checkpoint inhibitors in cancer therapy
Eika S. Webb, Peng Liu, Renato Baleeiro, Nicholas R. Lemoine, Ming Yuan, Yaohe Wang
Immune checkpoint inhibitors in cancer therapy
In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) which have been shown to have potent immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through engagement with its ligands B7-1 (CD80) and B7-2 (CD86), plays a pivotal role in attenuating the activation of naïve and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction through the removal of coinhibitory signals blocking anti-tumor T cell responses.
checkpoint inhibitor / CTLA-4 / PD-1 / immunotherapy / cancer
[1] |
Page DB, Postow MA, Callahan MK,
Pubmed
|
[2] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252–264
Pubmed
|
[3] |
Burnet M. Cancer; a biological approach. I. The processes of control[J]. Br Med J, 1957, 1(5022): 779–786
Pubmed
|
[4] |
Sakaguchi S, Miyara M, Costantino CM,
Pubmed
|
[5] |
Curiel TJ, Coukos G, Zou L,
Pubmed
|
[6] |
Kryczek I, Zou L, Rodriguez P,
Pubmed
|
[7] |
Curiel TJ, Wei S, Dong H,
Pubmed
|
[8] |
Cui TX, Kryczek I, Zhao L,
Pubmed
|
[9] |
Zhang L, Conejo-Garcia JR, Katsaros D,
Pubmed
|
[10] |
Pagès F, Berger A, Camus M,
Pubmed
|
[11] |
Galon J, Costes A, Sanchez-Cabo F,
Pubmed
|
[12] |
Kryczek I, Zhao E, Liu Y,
|
[13] |
Zhao E, Maj T, Kryczek I,
Pubmed
|
[14] |
Chen L, Linsley PS, Hellström KE. Costimulation of T cells for tumor immunity[J]. Immunol Today, 1993, 14(10): 483–486
Pubmed
|
[15] |
Tivol EA, Borriello F, Schweitzer AN,
Pubmed
|
[16] |
Nishimura H, Okazaki T, Tanaka Y,
Pubmed
|
[17] |
Nishimura H, Nose M, Hiai H,
Pubmed
|
[18] |
Waterhouse P, Penninger JM, Timms E,
Pubmed
|
[19] |
Allison JP, Hurwitz AA, Leach DR. Manipulation of costimulatory signals to enhance antitumor T-cell responses[J]. Curr Opin Immunol, 1995, 7(5): 682–686
Pubmed
|
[20] |
Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application[J]. Int Immunol, 2007, 19(7): 813–824
Pubmed
|
[21] |
Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18): 1767–1778
Pubmed
|
[22] |
Dong H, Zhu G, Tamada K,
Pubmed
|
[23] |
Tseng SY, Otsuji M, Gorski K,
Pubmed
|
[24] |
Freeman GJ, Long AJ, Iwai Y,
Pubmed
|
[25] |
Latchman Y, Wood CR, Chernova T,
Pubmed
|
[26] |
Butte MJ, Keir ME, Phamduy TB,
Pubmed
|
[27] |
Dong H, Strome SE, Salomao DR,
Pubmed
|
[28] |
Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next[J]? Curr Opin Immunol, 2015, 33: 23–35
Pubmed
|
[29] |
Aldarouish M, Wang C. Trends and advances in tumor immunology and lung cancer immunotherapy[J]. Journal of experimental & clinical cancer research: CR. 2016;35:157.
|
[30] |
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annu Rev Immunol, 2005, 23: 515–548
Pubmed
|
[31] |
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996, 271(5256): 1734–1736
Pubmed
|
[32] |
Erfani N, Mehrabadi SM, Ghayumi MA,
Pubmed
|
[33] |
Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment[J]. Cell Death Dis, 2015, 6: e1792
Pubmed
|
[34] |
Funt SA, Page DB, Wolchok JD,
Pubmed
|
[35] |
Li L, Chao QG, Ping LZ,
Pubmed
|
[36] |
Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment[J]. Nat Rev Immunol, 2008, 8(6): 467–477
Pubmed
|
[37] |
Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future[J]. J Clin Invest, 2015, 125(9): 3384–3391
Pubmed
|
[38] |
Sauce D, Almeida JR, Larsen M,
Pubmed
|
[39] |
Liang SC, Latchman YE, Buhlmann JE,
Pubmed
|
[40] |
Thompson RH, Gillett MD, Cheville JC,
Pubmed
|
[41] |
Inman BA, Sebo TJ, Frigola X,
Pubmed
|
[42] |
Hamanishi J, Mandai M, Iwasaki M,
Pubmed
|
[43] |
Wu C, Zhu Y, Jiang J,
Pubmed
|
[44] |
Nomi T, Sho M, Akahori T,
|
[45] |
Brown JA, Dorfman DM, Ma FR,
Pubmed
|
[46] |
Konishi J, Yamazaki K, Azuma M,
|
[47] |
Liu J, Hamrouni A, Wolowiec D,
Pubmed
|
[48] |
Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy[J]. FEBS Lett, 2014, 588(2): 368–376
Pubmed
|
[49] |
Robert C, Thomas L, Bondarenko I,
Pubmed
|
[50] |
Hodi FS, O’Day SJ, McDermott DF,
Pubmed
|
[51] |
van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation[J]. J Exp Med, 1999, 190(3): 355–366
Pubmed
|
[52] |
Kwon ED, Hurwitz AA, Foster BA,
Pubmed
|
[53] |
Van Ginderachter JA, Liu Y, Geldhof AB,
Pubmed
|
[54] |
Saha A, Chatterjee SK. Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer[J]. Scand J Immunol, 2010, 71(2): 70–82
Pubmed
|
[55] |
Sutmuller RP, van Duivenvoorde LM, van Elsas A,
Pubmed
|
[56] |
Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4[J]. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007;13:5238–42.
|
[57] |
Boasberg P, Hamid O, O’Day S. Ipilimumab: unleashing the power of the immune system through CTLA-4 blockade[J]. Semin Oncol, 2010, 37(5): 440–449
Pubmed
|
[58] |
Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab[J]. Semin Oncol, 2010, 37(5): 450–454
Pubmed
|
[59] |
Sondak VK, Smalley KS, Kudchadkar R,
Pubmed
|
[60] |
Topalian SL, Hodi FS, Brahmer JR,
Pubmed
|
[61] |
Prieto PA, Yang JC, Sherry RM,
|
[62] |
Thompson JA, Hamid O, Minor D,
Pubmed
|
[63] |
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nat Rev Cancer, 2012, 12(4): 237–251
Pubmed
|
[64] |
Schadendorf D, Hodi FS, Robert C,
Pubmed
|
[65] |
Brahmer JR, Tykodi SS, Chow LQ,
Pubmed
|
[66] |
Brahmer JR, Drake CG, Wollner I,
Pubmed
|
[67] |
Lipson EJ, Sharfman WH, Drake CG,
|
[68] |
Li B, VanRoey M, Wang C,
|
[69] |
Soares KC, Rucki AA, Wu AA,
Pubmed
|
[70] |
Robert C, Ribas A, Wolchok JD,
Pubmed
|
[71] |
Larkin J, Lao CD, Urba WJ,
Pubmed
|
[72] |
Ascierto PA, Marincola FM. 2015: The Year of Anti-PD-1/PD-L1s Against melanoma and beyond[J]. EBio Medicine, 2015, 2(2): 92–93
Pubmed
|
[73] |
Powles T, Eder JP, Fine GD,
Pubmed
|
[74] |
Herbst RS, Soria JC, Kowanetz M,
Pubmed
|
[75] |
Le DT, Uram JN, Wang H,
Pubmed
|
[76] |
Armand P, Nagler A, Weller EA,
Pubmed
|
[77] |
Westin JR, Chu F, Zhang M,
Pubmed
|
[78] |
Ansell SM, Lesokhin AM, Borrello I,
Pubmed
|
[79] |
Hamid O, Robert C, Daud A,
Pubmed
|
[80] |
Topalian SL, Sznol M, McDermott DF,
Pubmed
|
[81] |
Robert C, Schachter J, Long GV,
Pubmed
|
[82] |
Larkin J, Chiarion-Sileni V, Gonzalez R,
Pubmed
|
[83] |
Robert C, Long GV, Brady B,
Pubmed
|
[84] |
Weber JS, D’Angelo SP, Minor D,
Pubmed
|
[85] |
Garon EB, Rizvi NA, Hui R,
Pubmed
|
[86] |
Brahmer J, Reckamp KL, Baas P,
Pubmed
|
[87] |
Gettinger SN, Horn L, Gandhi L,
Pubmed
|
[88] |
Rizvi NA, Mazières J, Planchard D,
Pubmed
|
[89] |
McDermott DF, Drake CG, Sznol M,
Pubmed
|
[90] |
Harvey RD. Immunologic and clinical effects of targeting PD-1 in lung cancer[J]. Clin Pharmacol Ther, 2014, 96(2): 214–223
Pubmed
|
[91] |
Tumeh PC, Harview CL, Yearley JH,
Pubmed
|
[92] |
Mangsbo SM, Sandin LC, Anger K,
Pubmed
|
[93] |
Raval RR, Sharabi AB, Walker AJ,
Pubmed
|
[94] |
Tykodi SS. PD-1 as an emerging therapeutic target in renal cell carcinoma: current evidence[J]. Onco Targets Ther, 2014, 7: 1349–1359
Pubmed
|
[95] |
Stagg J, Allard B. Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Ther Adv Med Oncol, 2013, 5(3): 169–181
Pubmed
|
[96] |
Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes: Revisiting the antitumor immune response potential in breast cancer[J]. Oncoimmunology, 2014, 3: e29288
Pubmed
|
[97] |
Brahmer JR, Topalian S, Wollner I,
Pubmed
|
[98] |
Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy[J]. Front Oncol, 2016, 6: 233
Pubmed
|
[99] |
Naidoo J, Page DB, Li BT,
|
[100] |
Alexandrov LB, Nik-Zainal S, Wedge DC,
Pubmed
|
[101] |
Snyder A, Makarov V, Merghoub T,
Pubmed
|
[102] |
Rizvi NA, Hellmann MD, Snyder A,
Pubmed
|
[103] |
Gubin MM, Zhang X, Schuster H,
Pubmed
|
[104] |
Curran MA, Montalvo W, Yagita H,
Pubmed
|
[105] |
Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J]. J Leukoc Biol, 2013, 94(1): 25–39
Pubmed
|
[106] |
Sznol MKH, Callahan MK, Postow MA,
|
[107] |
Hirano F, Kaneko K, Tamura H,
Pubmed
|
[108] |
Melero I, Shuford WW, Newby SA,
Pubmed
|
[109] |
Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity[J]. Cancer Immunol Res, 2014, 2(2): 142–153
Pubmed
|
[110] |
Guo Z, Wang X, Cheng D,
Pubmed
|
[111] |
Kocak E, Lute K, Chang X,
Pubmed
|
[112] |
Belcaid Z, Phallen JA, Zeng J,
Pubmed
|
[113] |
DaiM, Wei H, YipYY,
Pubmed
|
/
〈 | 〉 |