Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes
Toru Hiyoshi, Mutsunori Fujiwara, Zemin Yao
Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes
Postprandial glucose level is an independent risk factor for cardiovascular disease that exerts effects greater than glucose levels at fasting state, whereas increase in serum triglyceride level, under both fasting and postprandial conditions, contributes to the development of arteriosclerosis. Insulin resistance is a prevailing cause of abnormalities in postabsorptive excursion of blood glucose and postprandial lipid profile. Excess fat deposition renders a vicious cycle of hyperglycemia and hypertriglyceridemia in the postprandial state, and both of which are contributors to atherosclerotic change of vessels especially in patients with type 2 diabetes mellitus. Several therapeutic approaches for ameliorating each of these abnormalities have been attempted, including various antidiabetic agents or new compounds targeting lipid metabolism.
postprandial hyperglycemia / postprandial hypertriglyceridemia / Type 2 diabetes mellitus / atherosclerosis
[1] |
Group TDS, and the The DECODE Study Group. Group on behalf of the EDE. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases[J]? Diabetes Care, 2003, 26(3): 688–696
CrossRef
Google scholar
|
[2] |
Levitan EB, Song Y, Ford ES,
CrossRef
Google scholar
|
[3] |
DECODE Study Group, and the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria[J]. Arch Intern Med, 2001, 161(3): 397–405
CrossRef
Google scholar
|
[4] |
Sone H, Tanaka S, Tanaka S,
CrossRef
Google scholar
|
[5] |
Nakamura H, Arakawa K, Itakura H,
CrossRef
Google scholar
|
[6] |
Iso H, Imano H, Yamagishi K,
CrossRef
Google scholar
|
[7] |
Zilversmit DB. Atherogenesis: a postprandial phenomenon[J]. Circulation, 1979, 60(3): 473–485
CrossRef
Google scholar
|
[8] |
Monnier L, Colette C, Dunseath GJ,
CrossRef
Google scholar
|
[9] |
International Diabetes Federation GUIDELINE FOR MANAGEMENT OF POSTMEAL GLUCOSE IN DIABETES[J]. 2011, http://www.idf.org/2011-guideline-management-postmeal-glucose-diabetes.
|
[10] |
Kodama K, Tojjar D, Yamada S,
CrossRef
Google scholar
|
[11] |
Wu L, Parhofer KG. Diabetic dyslipidemia[J]. Metabolism, 2014, 63(12): 1469–1479
CrossRef
Google scholar
|
[12] |
Node K, Inoue T. Postprandial hyperglycemia as an etiological factor in vascular failure[J]. Cardiovasc Diabetol, 2009, 8(1): 23
CrossRef
Google scholar
|
[13] |
Tomkin GH, Owens D. Dyslipidaemia of diabetes and the intestine[J]. World J Diabetes, 2015, 6(7): 970–977
CrossRef
Google scholar
|
[14] |
Ceriello A, Genovese S. Atherogenicity of postprandial hyperglycemia and lipotoxicity[J]. Rev Endocr Metab Disord, 2016, 17(1): 111–116
CrossRef
Google scholar
|
[15] |
Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy[J]. Diabetes, 2010, 59(11): 2697–2707
CrossRef
Google scholar
|
[16] |
Ginsberg HN. Review: Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia[J]. J Clin Endocrinol Metab, 2006, 91(2): 383–392
CrossRef
Google scholar
|
[17] |
Bonora E, Corrao G, Bagnardi V,
CrossRef
Google scholar
|
[18] |
Pratley RE, Weyer C. The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus[J]. Diabetologia, 2001, 44(8): 929–945
CrossRef
Google scholar
|
[19] |
Fineman MS, Koda JE, Shen LZ,
CrossRef
Google scholar
|
[20] |
Koda JE, Fineman M, Rink TJ,
CrossRef
Google scholar
|
[21] |
Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J]. Am J Physiol Endocrinol Metab, 2004, 287(2): E199–E206
CrossRef
Google scholar
|
[22] |
Toft-Nielsen MB, Damholt MB, Madsbad S,
CrossRef
Google scholar
|
[23] |
Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function[J]? Diabetes, 2010, 59(5): 1117–1125
CrossRef
Google scholar
|
[24] |
Little TJ, Pilichiewicz AN, Russo A,
CrossRef
Google scholar
|
[25] |
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet, 2006, 368(9548): 1696–1705
CrossRef
Google scholar
|
[26] |
Haller H, Lindschau C, Quass P,
CrossRef
Google scholar
|
[27] |
Goetze S, Xi XP, Kawano Y,
CrossRef
Google scholar
|
[28] |
Anderson TJ. Assessment and treatment of endothelial dysfunction in humans[J]. J Am Coll Cardiol, 1999, 34(3): 631–638
CrossRef
Google scholar
|
[29] |
Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058–1070
CrossRef
Google scholar
|
[30] |
Wu J, Xia S, Kalionis B,
|
[31] |
Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction[J]. J Clin Invest, 1997, 100(9): 2153–2157
CrossRef
Google scholar
|
[32] |
Monnier L, Mas E, Ginet C,
CrossRef
Google scholar
|
[33] |
Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: Variations with increasing levels of HbA1c[J]. Diabetes Care, 2003, 26(3): 881–885
CrossRef
Google scholar
|
[34] |
Ceriello A, Falleti E, Motz E,
CrossRef
Google scholar
|
[35] |
Shuto Y, Asai A, Nagao M,
CrossRef
Google scholar
|
[36] |
Mandosi E, Giannetta E, Filardi T,
CrossRef
Google scholar
|
[37] |
Firth RG, Bell PM, Marsh HM,
CrossRef
Google scholar
|
[38] |
Unger RH, Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus[J]. Lancet, 1975, 1(7897): 14–16
CrossRef
Google scholar
|
[39] |
Kawamori D, Kurpad AJ, Hu J,
CrossRef
Google scholar
|
[40] |
Ahren B. Beta- and alpha-cell dysfunction in subjects developing impaired glucose tolerance: outcome of a 12-year prospective study in postmenopausal Caucasian women[J]. Diabetes, 2009, 58(3): 726–731
CrossRef
Google scholar
|
[41] |
Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes[J]. Diabetologia, 2011, 54(7): 1720–1725
CrossRef
Google scholar
|
[42] |
Kubota N, Kubota T, Itoh S,
CrossRef
Google scholar
|
[43] |
Kubota T, Kubota N, Kumagai H,
CrossRef
Google scholar
|
[44] |
The Diabetes Control and Complications Trial Research Group. The Effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977–986
CrossRef
Google scholar
|
[45] |
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet, 1998, 352(9131): 837–853
CrossRef
Google scholar
|
[46] |
Ohkubo Y, Kishikawa H, Araki E,
CrossRef
Google scholar
|
[47] |
Turner RC, Millns H, Holman RR,
CrossRef
Google scholar
|
[48] |
Tominaga M, Eguchi H, Manaka H,
CrossRef
Google scholar
|
[49] |
Nakagami T, Qiao Q, Tuomilehto J,
CrossRef
Google scholar
|
[50] |
Hanefeld M, Cagatay M, Petrowitsch T,
CrossRef
Google scholar
|
[51] |
Ceriello A, Esposito K, Piconi L,
CrossRef
Google scholar
|
[52] |
de Vries M, Klop B, Castro Cabezas M. The use of the non-fasting lipid profile for lipid-lowering therapy in clinical practice- point of view[J]. Atherosclerosis, 2014, 234(2): 473–475
CrossRef
Google scholar
|
[53] |
Rosenson RS, Davidson MH, Hirsh BJ,
CrossRef
Google scholar
|
[54] |
White KT, Moorthy MV, Akinkuolie AO,
CrossRef
Google scholar
|
[55] |
Langsted A, Nordestgaard BG. Nonfasting Lipid Profiles: The Way of the Future[J]. Clin Chem, 2015, 61(9): 1123–1125
CrossRef
Google scholar
|
[56] |
Syvänne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus[J]. Lancet, 1997, 350(Suppl): SI20–SI23
CrossRef
Google scholar
|
[57] |
Adiels M, Boren J, Caslake MJ,
CrossRef
Google scholar
|
[58] |
Bansal S, Buring JE, Rifai N,
CrossRef
Google scholar
|
[59] |
Harchaoui KEL, Visser ME, Kastelein JJP,
CrossRef
Google scholar
|
[60] |
Eberly LE, Stamler J, Neaton JD. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease[J]. Arch Intern Med, 2003, 163(9): 1077–1083
CrossRef
Google scholar
|
[61] |
Yao Z, Wang Y. Apolipoprotein C–III and hepatic triglyceride-rich lipoprotein production[J]. Curr Opin Lipidol, 2012, 23(3): 206–212
CrossRef
Google scholar
|
[62] |
Gaudet D, Brisson D, Tremblay K,
CrossRef
Google scholar
|
[63] |
Gaudet D, Alexander VJ, Baker BF,
CrossRef
Google scholar
|
[64] |
Graham MJ, Lee RG, Bell TA,
CrossRef
Google scholar
|
[65] |
TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J,
CrossRef
Google scholar
|
[66] |
Caron S, Verrijken A, Mertens I,
CrossRef
Google scholar
|
[67] |
Gleeson A, Anderton K, Owens D,
CrossRef
Google scholar
|
[68] |
Qin B, Qiu W, Avramoglu RK,
CrossRef
Google scholar
|
[69] |
Zoltowska M, Ziv E, Delvin E,
CrossRef
Google scholar
|
[70] |
Phillips C, Bennett A, Anderton K,
CrossRef
Google scholar
|
[71] |
Phillips C, Mullan K, Owens D,
CrossRef
Google scholar
|
[72] |
Lally S, Tan CY, Owens D,
CrossRef
Google scholar
|
[73] |
Sparks JD, Chamberlain JM, O’Dell C,
CrossRef
Google scholar
|
[74] |
Sarwar N, Gao P, Seshasai SRK,
CrossRef
Google scholar
|
[75] |
Kadowaki S, Okamura T, Hozawa A,
CrossRef
Google scholar
|
[76] |
Fujishima M, Kiyohara Y, Kato I,
CrossRef
Google scholar
|
[77] |
Nakamura K, Miyoshi T, Yunoki K,
CrossRef
Google scholar
|
[78] |
Gordin D, Saraheimo M, Tuomikangas J,
CrossRef
Google scholar
|
[79] |
Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies[J]. J Cardiovasc Risk, 1996, 3(2): 213–219
CrossRef
Google scholar
|
[80] |
Labreuche J, Touboul PJ, Amarenco P. Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: a systematic review of the epidemiological studies[J]. Atherosclerosis, 2009, 203(2): 331–345
CrossRef
Google scholar
|
[81] |
Noda H, Iso H, Saito I,
CrossRef
Google scholar
|
[82] |
Patel A, Barzi F, Jamrozik K,
CrossRef
Google scholar
|
[83] |
Sarwar N, Danesh J, Eiriksdottir G,
CrossRef
Google scholar
|
[84] |
Gæde P, Lund-Andersen H, Parving HH,
CrossRef
Google scholar
|
[85] |
Ma KL, Varghese Z, Ku Y,
CrossRef
Google scholar
|
[86] |
Zhao L, Chen Y, Tang R,
CrossRef
Google scholar
|
[87] |
Walenbergh SMA, Koek GH, Bieghs V,
CrossRef
Google scholar
|
[88] |
Tanaka M, Ikeda K, Suganami T,
CrossRef
Google scholar
|
[89] |
Itoh M, Kato H, Suganami T,
CrossRef
Google scholar
|
[90] |
Brenner C, Galluzzi L, Kepp O,
CrossRef
Google scholar
|
[91] |
Chiasson JL, Josse RG, Gomis R,
CrossRef
Google scholar
|
[92] |
Barrett ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control[J]. Nutr J, 2011, 10(1): 24
CrossRef
Google scholar
|
[93] |
Fujitani Y, Fujimoto S, Takahashi K,
CrossRef
Google scholar
|
[94] |
Pratley RE, Hagberg JM, Dengel DR,
CrossRef
Google scholar
|
[95] |
Pratley RE, Weyer C. The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus[J]. Diabetologia, 2001, 44(8): 929–945
CrossRef
Google scholar
|
[96] |
Teva, Product Information: Glyburide (Glibenclamide), 2009, https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/017532s030lbl.pdf.
|
[97] |
Sanofi-Aventis, Product Information: Glimepiride, 2012., www.accessdata.fda.gov/drugsatfda.../020496s018s019lbl.pdf.
|
[98] |
Hu S, Boettcher B, Dunning B. The mechanisms underlying the unique pharmacodynamics of nateglinide[J]. Diabetologia, 2003, 46(S1): M37–M43
CrossRef
Google scholar
|
[99] |
Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond[J]. Drugs Context, 2015, 4(212283): 1–19
CrossRef
Google scholar
|
[100] |
Fisman E, Tenenbaum A. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes[J]. Cardiovasc Diabetol, 2015, 14(1): 129
CrossRef
Google scholar
|
[101] |
Green J, Bethel M, Armstrong P,
CrossRef
Google scholar
|
[102] |
Zannad F, Cannon C, Cushman W,
CrossRef
Google scholar
|
[103] |
The ACCORD Study Group,
CrossRef
Google scholar
|
[104] |
Colhoun , Helen M
|
[105] |
Sever PS, Poulter NR, Dahlof B,
CrossRef
Google scholar
|
[106] |
Borén J, Matikainen N, Adiels M,
CrossRef
Google scholar
|
[107] |
Scott R, O’Brien R, Fulcher G,
CrossRef
Google scholar
|
[108] |
Sabatine MS, Giugliano RP, Wiviott SD,
CrossRef
Google scholar
|
[109] |
Blom DJ, Hala T, Bolognese M,
CrossRef
Google scholar
|
[110] |
Chandler CE, Wilder DE, Pettini JL,
CrossRef
Google scholar
|
[111] |
Mera Y, Kawai T, Ogawa N,
CrossRef
Google scholar
|
[112] |
Filippov S, Pinkosky SL, Newton RS. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase[J]. Curr Opin Lipidol, 2014, 25(4): 309–315
CrossRef
Google scholar
|
[113] |
Lemus HN, Mendivil CO. Adenosine triphosphate citrate lyase: Emerging target in the treatment of dyslipidemia[J]. J Clin Lipidol, 2015, 9(3): 384–389
CrossRef
Google scholar
|
[114] |
Chen JS, Chen YH, Huang PH,
CrossRef
Google scholar
|
[115] |
Siegel G, Ermilov E, Knes O,
CrossRef
Google scholar
|
[116] |
Zhou YH, Yu JP, Liu YF,
|
[117] |
Xie Z, Liang G, Zhang L,
CrossRef
Google scholar
|
[118] |
Schultz O, Oberhauser F, Saech J,
CrossRef
Google scholar
|
[119] |
Strang AC, Bisoendial RJ, Kootte RS,
CrossRef
Google scholar
|
[120] |
Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection[J]. Circ Res, 2016, 118(1): 145–156
CrossRef
Google scholar
|
[121] |
Lippi G, Targher G. Optimal therapy for reduction of lipoprotein(a)[J]. J Clin Pharm Ther, 2012, 37(1): 1–3
CrossRef
Google scholar
|
[122] |
Mohammadpour AH, Akhlaghi F. Future of cholesteryl ester transfer protein (CETP) inhibitors: a pharmacological perspective[J]. Clin Pharmacokinet, 2013, 52(8): 615–626
CrossRef
Google scholar
|
[123] |
Kumashiro N, Beddow SA, Vatner DF,
CrossRef
Google scholar
|
[124] |
Kiyosue A, Hayashi N, Komori H,
CrossRef
Google scholar
|
[125] |
Lloyd DJ, St Jean DJJ, Kurzeja RJM,
CrossRef
Google scholar
|
[126] |
van Poelje PD, Potter SC, Erion MD. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes[J]. Handb Exp Pharmacol, 2011, 203: 279–301
CrossRef
Google scholar
|
[127] |
Swarbrick MM, Havel PJ, Levin AA,
CrossRef
Google scholar
|
[128] |
Agius L. New hepatic targets for glycaemic control in diabetes[J]. Best Pract Res Clin Endocrinol Metab, 2007, 21(4): 587–605
CrossRef
Google scholar
|
[129] |
Baker DJ, Timmons JA, Greenhaff PL. Glycogen phosphorylase inhibition in type 2 diabetes therapy: A systematic evaluation of metabolic and functional effects in rat skeletal muscle[J]. Diabetes, 2005, 54(8): 2453–2459
CrossRef
Google scholar
|
[130] |
Kazda CM, Ding Y, Kelly RP,
CrossRef
Google scholar
|
[131] |
Girard J. The inhibitory effects of insulin on hepatic glucose production are both direct and indirect[J]. Diabetes, 2006, 55(Supplement 2): S65–S69
CrossRef
Google scholar
|
[132] |
Gray LR, Sultana MR, Rauckhorst AJ,
CrossRef
Google scholar
|
[133] |
Divakaruni AS, Wiley SE, Rogers GW,
CrossRef
Google scholar
|
[134] |
DiTullio NW, Berkoff CE, Blank B,
CrossRef
Google scholar
|
[135] |
Altomonte J, Richter A, Harbaran S,
CrossRef
Google scholar
|
[136] |
Perry RJ, Kim T, Zhang XM,
CrossRef
Google scholar
|
[137] |
Perry RJ, Zhang D, Zhang XM,
CrossRef
Google scholar
|
[138] |
Yamauchi T, Nio Y, Maki T,
CrossRef
Google scholar
|
[139] |
Iwabu M, Yamauchi T, Okada-Iwabu M,
CrossRef
Google scholar
|
[140] |
Okada-Iwabu M, Yamauchi T, Iwabu M,
CrossRef
Google scholar
|
/
〈 | 〉 |