Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro

Anna Karolina Zuk , Xuesong Wen , Stephen Dilworth , Dong Li , Lucy Ghali

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 240 -247.

PDF (343KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 240 -247. DOI: 10.7555/JBR.31.20160150
Original Article
Original Article

Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro

Author information +
History +
PDF (343KB)

Abstract

The use of three dimensional in vitro systems in cancer research is a promising path for developing effective anticancer therapies. The aim of this study was to engineer a functional 3-Din vitro model of normal and cancerous cervical tissue.Normal epithelial and immortalized cervical epithelial carcinoma cell lines were used to construct 3-D artificial normal cervical and cervical cancerous tissues. De-epidermised dermis (DED) was used as a scaffold for both models. Morphological analyses were conducted by using hematoxylin and eosin staining and characteristics of the models were studied by analyzing the expression of different structural cytokeratins and differential protein marker Mad1 using immunohistochemical technique.Haematoxylin and eosin staining results showed that normal cervical tissue had multi epithelial layers while cancerous cervical tissue showed dysplastic changes. Immunohistochemistry staining results revealed that for normal cervix model cytokeratin 10 was expressed in the upper stratified layer of epithelium while cytokeratin 5 was expressed mainly in the middle and basal layer. Cytokeratin 19 was weakly expressed in a few basal cells. Cervical cancer model showed cytokeratin 19 expression in different epithelial layers and weak or no expression for cytokeratin 5 and cytokeratin 10. Mad1 expression was detected in some suprabasal cells.The 3-Din vitro models showed stratified epithelial layers and expressed the same types and patterns of differentiation marker proteins as seen in correspondingin vivo tissue in either normal cervical or cervical cancerous tissue. Findings imply that they can serve as functional normal and cervical cancer models.

Keywords

cervical cancer / MAX dimerisation protein 1 / cytokeratins / three dimensional in vitro models

Cite this article

Download citation ▾
Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro. Journal of Biomedical Research, 2017, 31(3): 240-247 DOI:10.7555/JBR.31.20160150

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

In vitro studies are commonly used to mimic the physiologic environment of tumors[-] at early stages of drug development. When cells are grown as monolayers in conventional two-dimensional (2-D) models, they lack the natural three-dimensional (3-D) tissuein vivo characteristics[]. 2-D cell cultures can only provide some approximate information of normal and cancer tissues due to the highly unnatural geometric and mechanical limitations imposed on cells[]. This means that cells grown in conventional 2-D culture conditions commonly fail to mimic tissue structure and functions, and consequently do not provide information about the way cancer cells interact with the extracellular matrix (ECM) and its complex environment interactions that exist in human cancers[]. Under conventional culture conditions, keratinocytes grow as monolayers and are not able to grow and differentiate in stratified squamous epithelium as observed in the normal human cervix, but only reach an incomplete terminal differentiation[-]. Animal models established in immunocompromised mice reconstitute conditions observedin vivo mimicking the physiologic microenvironment of cervical carcinoma, but these may also show false effects on tumor progression and molecular mechanisms of the disease due to the differences between mice and humans[]. To overcome the above difficulties, in vitro 3-D tumor models with different human cells have been progressively explored to enable accurate human tissue reproduction[]. 3-D in vitro models have an important role in tumor biology and provide important insights into cancer research. They enhance our understanding of tissue organization, cellular differentiation and provide us a better understanding of tumor behavior. The 3-D ECM and its receptors can promote normal epithelial polarity and differentiation[]. Various techniques have been developed for the construction of 3-D in vitro tumor models, such as cell-seeding 3-D scaffolds[], hydrogel embedding[], microfluidic chips[] or cell patterning[]. Tissue engineering developments have further improved the diversity and quality of 3-Din vitro models which take them one step closer to the in vivo situation. However, each of the represented models has its advantages and limitations. One model is organotypic epithelial “raft” culture system that allows proliferation and full differentiation of keratinocyte monolayers by culturing cells on collagen gels at the air-liquid interface[-]. Normal keratinocytes grown in this model stratify and fully differentiate in a similar way to normal squamous epithelium[]. Another model that mimics the native state in the skin is the system where keratinocytes are grown on a de-epidermized or devitalized dermis, on which cells are able to grow at the air–liquid interface[-]. The latter model is considered more physiologically relevant as the cell's growing conditions are similar to thein vivo situation, and the diffusion of nutrients from the underlying dermis into the epidermis can be observed[]. In addition, the de-epidermised dermal (DED) scaffold uses a human acellular dermis to construct a new multilayered epidermis to preserve the basement membrane which is critical for keratinocytes attachmentin vitro[].

Materials and methods

Results

Expression of Mad 1 differentiation marker

Discussion

Cytokeratin 10 is a member of the type I keratin family and it is a suprabasal differentiation marker in ectocervical epithelium restricted to skin and cervix[]. Whenever cytokeratin 10 is expressed in invasive carcinomas, it is associated with the grade of differentiation and is expressed in well-differentiated areas and keratin pearls of squamous carcinomas[,,]. Cytokeratin 19 is an intermediate type I keratin, the smallest known acidic keratin of 40 kDa, that is not paired with a basic keratin in epithelial cells. This keratin is specifically found in the periderm, the transiently superficial layer that envelops the developing epidermis[,]. Cytokeratin 19 has not been detected in the epidermis of adult human skin and its presence is restricted to the outer root sheath of the hair follicle[-]. This cytokeratin is found only in the basal layer of normal epithelium of the cervix and in the full thickness of metaplastic cervical epithelium[]. Cytokeratin 5 is a neutral-basic cytokeratin expressed during differentiation of simple and stratified epithelial tissues. Cytokeratin 5 is type II keratin that is expressed mostly in the basal layer of the epidermis with its family member acidic keratin 14[]. In this study, cytokeratin 5 and 10 expression in NTERT 3-D in vitro model corresponded with staining seen in the normal cervix. Cytokeratin 19 was weakly expressed and found only in a few NTERT cells, but the localization of these positively stained cells corresponded to itsin vivo expression in the normal cervix. Moreover, we found that C33A cells when grown in our 3-D system showed cytokeratin distribution characteristic of typical cancerous tissue, where no positivity for cytokeratin 5, and weak or no positivity for cytokeratin 10 was observed, whereas cytokeratin 19 was expressed in different layers. In addition to cytokeratins, another differentiation marker, Mad 1, was used to indicate whether any differentiation process could be observed in our cervical cancer model. The Mad1 differentiation marker is a basic helix–loop–helix–leucine zipper protein that is a transcriptional repressor produced in differentiating cells[-]. Mad1 is detected in differentiating epithelial cells of the suprabasal layers of normal epidermis[] and its expression extends from the spinous to superficial layer[]. This transcriptional repressor is expressed at low levels in proliferating cells and its expression increases during differentiation of epithelial cells[,]. Mad 1 expression is associated with growth arrest whereas loss of its expression is related with the progression to invasive, poorly-differentiated cancers[,]. With increasing severity of dysplasia, the expression of Mad 1 is progressively shifted to more superficial layers and the immunostaining intensity is reduced[]. In this study, the expression of Mad1 confirmed that the partial differentiation process occurred in cancer cells after culturing them in the 3-D conditions.

References

[1]

Kim JB. Three-dimensional tissue culture models in cancer biology[J]. Semin Cancer Biol200515(5): 365–377

[2]

Ellingsen CNatvig  IGaustad JV Human cervical carcinoma xenograft models for studies of the physiological microenvironment of tumors[J]. J Cancer Res ClinOncol2009135(9): 1177–1184

[3]

Padrón JMvan der Wilt CLSmid  KThe multilayered postconfluent cell culture as a model for drug screening[J]. Crit Rev Oncol Hematol200036(2-3): 141–157

[4]

Sun TJackson  SHaycock JW Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents[J]. J Biotechnol2006122(3): 372–381

[5]

Benam KHDauth  SHassell B Engineered in vitro disease models[J]. Annu Rev Pathol201510(10): 195–262

[6]

Burdick ADBility  MTGirroir EE Ligand activation of peroxisome proliferator-activated receptor-beta/delta(PPARbeta/delta) inhibits cell growth of human N/TERT-1 keratinocytes[J]. Cell Signal200719(6): 1163–1171

[7]

York MGriffiths  HAWhittle E Evaluation of a human patch test for the identification and classification of skin irritation potential[J]. Contact Dermatitis199634(3): 204–212

[8]

Horning JLSahoo  SKVijayaraghavalu S 3-D tumor model for in vitro evaluation of anticancer drugs[J]. Mol Pharm20085(5): 849–862

[9]

Roskelley CDBissell  MJ. Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function[J]. Biochem Cell Biol199573(7-8): 391–397

[10]

Fischbach CChen  RMatsumoto T Engineering tumors with 3D scaffolds[J]. Nat Methods20074(10): 855–860

[11]

Szot CSBuchanan  CFFreeman JW 3D in vitro bioengineered tumors based on collagen I hydrogels[J]. Biomaterials201132(31): 7905–7912

[12]

Hsiao AYTorisawa  YSTung YC Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids[J]. Biomaterials200930(16): 3020–3027

[13]

Xu FCelli  JRizvi I A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform[J]. Biotechnol J20116(2): 204–212

[14]

Andrei Gvan den Oord  JFiten P Organotypic epithelial raft cultures as a model for evaluating compounds against alphaherpesviruses[J]. Antimicrob Agents Chemother200549(11): 4671–4680

[15]

Anacker DMoody  C. Generation of organotypic raft cultures from primary human keratinocytes[J]. J Vis Exp201260(60): 3–7

[16]

Delvenne PHubert  PJacobs N Giannini SL Havard L Renard I Saboulard D  and  Boniver J . The organotypic culture of HPV-transformed keratinocytes: an effective in vitro model for the development of new immunotherapeutic approaches for mucosal (pre)neoplastic lesions[J]. Vaccine20019 (17–19): 2557–2564.

[17]

Gibbs SVicanová  JBouwstra J Culture of reconstructed epidermis in a defined medium at 33 degrees C shows a delayed epidermal maturation, prolonged lifespan and improved stratum corneum[J]. Arch Dermatol Res1997289(10): 585–595

[18]

Regnier M and Darmon  M.25-Dihydroxyvitamin D3 stimulates specifically the last steps of epidermal differentiation of cultured human keratinocytes[J]. Differentiation; research in biological diversity199147 (3): 173–188.

[19]

Breiden BGallala  HDoering T Optimization of submerged keratinocyte cultures for the synthesis of barrier ceramides[J]. Eur J Cell Biol200786(11-12): 657–673

[20]

Oudhoff MJKroeze  KLNazmi K Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1,000-fold[J]. FASEB J200923(11): 3928–3935

[21]

Chakrabarty KHDawson  RAHarris P Development of autologous human dermal-epidermal composites based on sterilized human allodermis for clinical use[J]. Br J Dermatol1999141(5): 811–823

[22]

Xie YRizzi  SCDawson R Development of a three-dimensional human skin equivalent wound model for investigating novel wound healing therapies[J]. Tissue Eng Part C Methods201016(5): 1111–1123

[23]

Smedts FRamaekers  FTroyanovsky S Keratin expression in cervical cancer[J]. Am J Pathol1992141(2): 497–511

[24]

Kim CJUm  SJKim TY Regulation of cell growth and HPV genes by exogenous estrogen in cervical cancer cells[J]. Int J Gynecol Cancer200010(2): 157–164

[25]

Abe HOikawa  T. Effects of estradiol and progesterone on the cytodifferentiation of epithelial cells in the oviduct of the newborn golden hamster[J]. Anat Rec1993235(3): 390–398

[26]

Comer MTLeese  HJSouthgate J . Induction of a differentiated ciliated cell phenotype in primary cultures of Fallopian tube epithelium. Hum Reprod199813(11): 3114–3120

[27]

Wang QLi  XWang L Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells[J]. Endocrinology2004145(12): 5568–5579

[28]

Wang HYuang  FHuang X Zhang H Yang S and Shi B.Effects of Estrogen and Progestogen on the Growth and Apoptosis of Human Cervical Cancer Cells[J]. U.S Chinese Journal of Lymphology and Urology20065(2): 65–70.

[29]

Arbeit JMHowley  PMHanahan D . Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice[J]. Proc Natl AcadSci U S A199693(7): 2930–2935

[30]

Elson DARiley  RRLacey A Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis[J]. Cancer Res200060(5): 1267–1275

[31]

Park JSRhyu  JWKim CJ Neoplastic change of squamo-columnar junction in uterine cervix and vaginal epithelium by exogenous estrogen in hpv-18 URR E6/E7 transgenic mice[J]. GynecolOncol200389(3): 360–368

[32]

Li DWen  XGhali L hCGβ expression by cervical squamous carcinoma--in vivo histological association with tumour invasion and apoptosis[J]. Histopathology200853(2): 147–155

[33]

Fuchs EWeber  K. Intermediate filaments: structure, dynamics, function, and disease[J]. Annu Rev Biochem199463: 345–382

[34]

Alix-Panabières C Vendrell JP Slijper M Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer[J]. Breast Cancer Res200911(3): R39

[35]

Coulombe PAOmary  MB. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments[J]. CurrOpin Cell Biol200214(1): 110–122

[36]

Moll RFranke  WWSchiller DL The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells[J]. Cell198231(1): 11–24

[37]

Moll RSchiller  DLFranke WW . Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns[J]. J Cell Biol1990111(2): 567–580

[38]

Bobrow LGMakin  CALaw S Expression of low molecular weight cytokeratin proteins in cervical neoplasia[J]. J Pathol1986148(2): 135–140

[39]

Lane EBAlexander  CM. Use of keratin antibodies in tumor diagnosis[J]. Semin Cancer Biol19901(3): 165–179

[40]

Carrilho CAlberto  MBuane L Keratins 8, 10, 13, and 17 are useful markers in the diagnosis of human cervix carcinomas[J]. Hum Pathol200435(5): 546–551

[41]

Smedts FRamaekers  FRobben H Changing patterns of keratin expression during progression of cervical intraepithelial neoplasia[J]. Am J Pathol1990136(3): 657–668

[42]

Smedts FRamaekers  FLink M Detection of keratin subtypes in routinely processed cervical tissue: implications for tumour classification and the study of cervix cancer aetiology[J]. Virchows Arch1994425(2): 145–155

[43]

Maddox PSasieni  PSzarewski A Differential expression of keratins 10, 17, and 19 in normal cervical epithelium, cervical intraepithelial neoplasia, and cervical carcinoma[J]. J ClinPathol199952(1): 41–46

[44]

Heatley MK. Keratin expression in human tissues and neoplasms[J]. Histopathology200241(4): 365–366

[45]

Stasiak PCPurkis  PELeigh IM Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins[J]. J Invest Dermatol198992(5): 707–716

[46]

Michel MTörök  NGodbout MJ Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage[J]. J Cell Sci1996109(Pt 5): 1017–1028

[47]

Bonifas JMBare  JWLynch ED Regional assignment of the human keratin 5 (KRT5) gene to chromosome 12q near D12S14 by PCR analysis of somatic cell hybrids and multicolor in situ hybridization[J]. Genomics199213(2): 452–454

[48]

Roussel MFAshmun  RASherr CJ Inhibition of cell proliferation by the Mad1 transcriptional repressor[J]. Mol Cell Biol199616(6): 2796–2801

[49]

Amati BLand  H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death[J]. CurrOpin Genet Dev19944(1): 102–108

[50]

Hurlin PJFoley  KPAyer DE Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis[J]. Oncogene199511(12): 2487–2501

[51]

Zanotti SFisseler-Eckhoff  AMannherz HG . Changes in the topological expression of markers of differentiation and apoptosis in defined stages of human cervical dysplasia and carcinoma[J]. GynecolOncol200389(3): 376–384

[52]

Hurlin PJQuéva  CKoskinen PJ Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation[J]. EMBO J199514(22): 5646–5659

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved.

AI Summary AI Mindmap
PDF (343KB)

836

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/