Multifunctional quantum dots and liposome complexes in drug delivery

Qi Wang, Yimin Chao

PDF(491 KB)
PDF(491 KB)
Journal of Biomedical Research ›› 2018, Vol. 32 ›› Issue (2) : 91-106. DOI: 10.7555/JBR.31.20160146
Review Article
Review Article

Multifunctional quantum dots and liposome complexes in drug delivery

Author information +
History +

Abstract

Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

Keywords

liposomes / quantum dots / nanomedicine / drug delivery

Cite this article

Download citation ▾
Qi Wang, Yimin Chao. Multifunctional quantum dots and liposome complexes in drug delivery. Journal of Biomedical Research, 2018, 32(2): 91‒106 https://doi.org/10.7555/JBR.31.20160146

References

[1]
Mandal B, Bhattacharjee H, Mittal N, Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform[J]. Nanomedicine (Lond), 2013, 9(4): 474–491.
CrossRef Google scholar
[2]
Tan SW, Li X, Guo YJ, Lipid-enveloped hybrid nanoparticles for drug delivery[J]. Nanoscale, 2013, 5(3): 860–872.
CrossRef Google scholar
[3]
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine[J]. Int J Nanomedicine, 2014, 9: 711–726.
[4]
Jeong SH, Kim JH, Yi SM, Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method[J]. Biochem Biophys Res Commun, 2010, 394(3): 612–615.
CrossRef Google scholar
[5]
Schütz CA, Juillerat-Jeanneret L, Mueller H, Therapeutic nanoparticles in clinics and under clinical evaluation[J]. Nanomedicine (Lond), 2013, 8(3): 449–467.
CrossRef Google scholar
[6]
Shao K, Singha S, Clemente-Casares X, Nanoparticle-based immunotherapy for cancer[J]. ACS Nano, 2015, 9(1): 16–30.
CrossRef Google scholar
[7]
Kim CS, Duncan B, Creran B, Triggered nanoparticles as therapeutics[J]. Nano Today, 2013, 8(4): 439–447.
CrossRef Google scholar
[8]
Zrazhevskiy P, Sena M, Gao XH. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J]. Chem Soc Rev, 2010, 39(11): 4326–4354.
CrossRef Google scholar
[9]
Medintz IL, Uyeda HT, Goldman ER, Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat Mater, 2005, 4(6): 435–446.
CrossRef Google scholar
[10]
Bozzuto G, Molinari A. Liposomes as nanomedical devices[J]. Int J Nanomedicine, 2015, 10: 975–999.
CrossRef Google scholar
[11]
Sailor MJ, Park JH. Hybrid Nanoparticles for Detection and Treatment of Cancer[J]. Adv Mater, 2012, 24(28): 3779–3802.
CrossRef Google scholar
[12]
Bangham AD, Horne RW. Negative staining of phospholipids+their structural modification by-surface active agents as observed in electron microscope[J]. J Mol Biol, 1964, 8(5): 660–668.
CrossRef Google scholar
[13]
Bangham AD, Hill MW, Miller NGA. Preparation and Use of Liposomes as Models of Biological Membranes. In: Korn E, editor[J]. Methods in Membrane Biology Springer US, 1974:1–68.
[14]
Papahadjopoulos D, Kimelberg HK. Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins[J]. Prog Surf Sci, 1974, 4: 141–232.
CrossRef Google scholar
[15]
Allen TM, Hansen CB, Demenezes DEL. Pharmacokinetics of long-circulating liposomes.[in English][J]. Adv Drug Deliv Rev, 1995, 16(2–3): 267–284.
CrossRef Google scholar
[16]
Milla P, Dosio F, Cattel L. PEGylation of Proteins and Liposomes: a Powerful and Flexible Strategy to Improve the Drug Delivery[J]. Curr Drug Metab, 2012, 13(1): 105–119.
CrossRef Google scholar
[17]
Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics[J]. Clin Pharmacokinet, 2001, 40(7): 539–551.
CrossRef Google scholar
[18]
Howard MD, Jay M, Dziublal TD, PEGylation of nanocarrier drug delivery systems: State of the art[J]. J Biomed Nanotechnol, 2008, 4(2): 133–148.
CrossRef Google scholar
[19]
Kirpotin D, Park JW, Hong K, Sterically stabilized Anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro[J]. Biochemistry, 1997, 36(1): 66–75.
CrossRef Google scholar
[20]
Mamot C, Drummond DC, Greiser U, Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells[J]. Cancer Res, 2003, 63(12): 3154–3161.
[21]
Hansen CB, Kao GY, Moase EH, Attachment of antibodies to sterically stabilized liposomes- evaluation, comparison and optimization of coupling procedures[J]. Biochim Biophys Acta, 1995, 1239(2): 133–144.
CrossRef Google scholar
[22]
Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs[J]. Adv Drug Deliv Rev, 1999, 40(1–2): 75–87.
CrossRef Google scholar
[23]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Liposome: classification, preparation, and applications[J]. Nanoscale Res Lett, 2013, 8(1): 102
CrossRef Google scholar
[24]
Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations[J]. Asian Journal of Pharmaceutical Sciences, 2013, 8(2): 81–87.
CrossRef Google scholar
[25]
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Preparation, characterization and applications of liposomes: state of the art[J]. Journal of Colloid Science and Biotechnology, 2012, 1(2): 147–168.
CrossRef Google scholar
[26]
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 1973, 298(4): 1015–1019.
CrossRef Google scholar
[27]
Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method[J]. Biochim Biophys Acta, 1976, 443(3): 629–634.
[28]
Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation[J]. Proc Natl Acad Sci USA, 1978, 75(9): 4194–4198.
CrossRef Google scholar
[29]
Alpes H, Allmann K, Plattner H, Formation of large unilamellar vesicles using alkyl maltoside detergents[J]. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 1986, 862(2): 294–302.
CrossRef Google scholar
[30]
Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes Containing Drug and Cyclodextrin Prepared by the One-Step Spray-Drying Method[J]. Drug Dev Ind Pharm, 2000, 26(12): 1279–1284.
CrossRef Google scholar
[31]
Li CL, Deng YJ. A novel method for the preparation of liposomes: Freeze drying of monophase solutions[J]. J Pharm Sci, 2004, 93(6): 1403–1414.
CrossRef Google scholar
[32]
Jahn A, Vreeland WN, Gaitan M, Controlled Vesicle Self-Assembly in Microfluidic Channels with Hydrodynamic Focusing[J]. J Am Chem Soc, 2004, 126(9): 2674–2675.
CrossRef Google scholar
[33]
Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity[J]. Expert Opin Drug Deliv, 2011, 8(5): 565–580.
CrossRef Google scholar
[34]
Fritze A, Hens F, Kimpfler A, Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient[J]. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 2006, 1758(10): 1633–1640.
CrossRef Google scholar
[35]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications[J]. Adv Drug Deliv Rev, 2013, 65(1): 36–48.
CrossRef Google scholar
[36]
Zamboni WC. Concept and clinical evaluation of carrier-mediated anticancer agents[J]. Oncologist, 2008, 13(3): 248–260.
CrossRef Google scholar
[37]
Bladé J, Sonneveld P, Miguel JFS, Efficacy and Safety of Pegylated Liposomal Doxorubicin in Combination With Bortezomib for Multiple Myeloma: Effects of Adverse Prognostic Factors on Outcome[J]. Clin Lymphoma Myeloma Leuk, 2011, 11(1): 44–49.
CrossRef Google scholar
[38]
Campos SM, Matulonis UA, Penson RT, Phase II study of liposomal doxorubicin and weekly paclitaxel for recurrent Mullerian tumors[J]. Gynecol Oncol, 2003, 90(3): 610–618.
CrossRef Google scholar
[39]
Hann IM, Prentice HG. Lipid-based amphotericin B: A review of the last 10 years of use[J]. Int J Antimicrob Agents, 2001, 17(3): 161–169.
CrossRef Google scholar
[40]
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy[J]. Int J Nanomedicine, 2012, 7: 49–60.
[41]
Fasol U, Frost A, Büchert M, Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis[J]. Ann Oncol, 2012, 23(4): 1030–1036.
CrossRef Google scholar
[42]
Poon RTP, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer[J]. Future Oncol, 2011, 7(8): 937–945.
CrossRef Google scholar
[43]
McDonagh CF, Huhalov A, Harms BD, Antitumor Activity of a Novel Bispecific Antibody That Targets the ErbB2/ErbB3 Oncogenic Unit and Inhibits Heregulin-Induced Activation of ErbB3[J]. Mol Cancer Ther, 2012, 11(3): 582–593.
CrossRef Google scholar
[44]
Bangal M, Ashtaputre S, Marathe S, Semiconductor Nanoparticles[J]. Hyperfine Interact, 2005, 160(1): 81–94.
CrossRef Google scholar
[45]
Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals[J]. J Phys Chem, 1996, 100(31): 13226–13239.
CrossRef Google scholar
[46]
Weller H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules[J]. Angew Chem Int Ed Engl, 1993, 32(1): 41–53.
CrossRef Google scholar
[47]
Weller H. Quantized Semiconductor Particles: A novel state of matter for materials science[J]. Adv Mater, 1993, 5(2): 88–95.
CrossRef Google scholar
[48]
Talapin DV, Lee JS, Kovalenko MV, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications[J]. Chem Rev, 2010, 110(1): 389–458.
CrossRef Google scholar
[49]
Chan WCW, Maxwell DJ, Gao XH, Luminescent quantum dots for multiplexed biological detection and imaging[J]. Curr Opin Biotechnol, 2002, 13(1): 40–46.
CrossRef Google scholar
[50]
Pickett NL, O’Brien P. Syntheses of semiconductor nanoparticles using single-molecular precursors[J]. Chem Rec, 2001, 1(6): 467–479.
CrossRef Google scholar
[51]
Chan WCW, Maxwell DJ, Gao X, Luminescent quantum dots for multiplexed biological detection and imaging[J]. Curr Opin Biotechnol, 2002, 13(1): 40–46.
CrossRef Google scholar
[52]
Michalet X, Pinaud FF, Bentolila LA, Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538–544.
CrossRef Google scholar
[53]
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Quantum dots versus organic dyes as fluorescent labels[J]. Nat Methods, 2008, 5(9): 763–775.
CrossRef Google scholar
[54]
Chen CS, Yao J, Durst R. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles.[in English][J]. J Nanopart Res, 2006, 8(6): 1033–1038.
CrossRef Google scholar
[55]
OberdörsterG, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles[J]. Environ Health Perspect, 2005, 113(7): 823–839.
CrossRef Google scholar
[56]
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1): 26–49.
CrossRef Google scholar
[57]
Karakoti AS, Shukla R, Shanker R, Surface functionalization of quantum dots for biological applications[J]. Adv Colloid Interface Sci, 2015, 215: 28–45.
CrossRef Google scholar
[58]
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chem Soc Rev, 2015, 44(14): 4792–4834.
CrossRef Google scholar
[59]
Clarke SJ, Hollmann CA, Zhang Z, Photophysics of dopamine-modified quantum dots and effects on biological systems[J]. Nat Mater, 2006, 5(5): 409–417.
CrossRef Google scholar
[60]
Smith AM, Duan H, Rhyner MN, A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots[J]. Phys Chem Chem Phys, 2006, 8(33): 3895–3903.
CrossRef Google scholar
[61]
Tian B, Al-Jamal WT, Al-Jamal KT, Doxorubicin-loaded lipid-quantum dot hybrids: Surface topography and release properties[J]. Int J Pharm, 2011, 416(2): 443–447.
CrossRef Google scholar
[62]
Tian BW, Al-Jamal WT, Kostarelos K. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics[J]. Chin Phys B, 2014, 23(8): 087805.
[63]
Gopalakrishnan G, Danelon C, Izewska P, Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells[J]. Angew Chem Int Ed, 2006, 45(33): 5478–5483.
CrossRef Google scholar
[64]
Al-Jamal WT, Al-Jamal KT, Tian B, Lipid-quanturn dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo[J]. ACS Nano, 2008, 2(3): 408–418.
CrossRef Google scholar
[65]
Al-Jamal WT, Al-Jamal KT, Cakebread A, Blood Circulation and Tissue Biodistribution of Lipid-Quantum Dot (L-QD) Hybrid Vesicles Intravenously Administered in Mice[J]. Bioconjug Chem, 2009, 20(9): 1696–1702.
CrossRef Google scholar
[66]
Bothun GD, Rabideau AE, Stoner MA. Hepatoma Cell Uptake of Cationic Multifluorescent Quantum Dot Liposomes[J]. J Phys Chem B, 2009, 113(22): 7725–7728.
CrossRef Google scholar
[67]
Ye C, Wang YQ, Li CG, Preparation of liposomes loaded with quantum dots, fluorescence resonance energy transfer studies, and near-infrared in-vivo imaging of mouse tissue[J]. Mikrochim Acta, 2013, 180(1–2): 117–125.
CrossRef Google scholar
[68]
Zhang LW, Wen CJ, Al-Suwayeh SA, Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin[J]. J Nanopart Res, 2012, 14(7): 882
CrossRef Google scholar
[69]
Voura EB, Jaiswal JK, Mattoussi H, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy[J]. Nat Med, 2004, 10(9): 993–998.
CrossRef Google scholar
[70]
Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo[J]. Nano Lett, 2008, 8(9): 2851–2857.
CrossRef Google scholar
[71]
Sigot V, Arndt-Jovin DJ, Jovin TM. Targeted Cellular Delivery of Quantum Dots Loaded on and in Biotinylated Liposomes[J]. Bioconjug Chem, 2010, 21(8): 1465–1472.
CrossRef Google scholar
[72]
Chu M, Zhuo S, Xu J, Liposome-coated quantum dots targeting the sentinel lymph node[J]. J Nanopart Res, 2010, 12(1): 187–197.
CrossRef Google scholar
[73]
Wang JY, Zhao JF, Wang PN, Liposome Encapsulation of Thiol-Capped CdTe Quantum Dots for Enhancing the Intracellular Delivery[J]. J Fluoresc, 2011, 21(4): 1635–1642.
CrossRef Google scholar
[74]
Al-Jamal WT, Al-Jamal KT, Bomans PH, Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer[J]. Small, 2008, 4(9): 1406–1415.
CrossRef Google scholar
[75]
Al-Jamal WT, Al-Jamal KT, Tian B, Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration[J]. Mol Pharm, 2009, 6(2): 520–530.
CrossRef Google scholar
[76]
Wi HS, Kim SJ, Lee K, Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability[J]. Colloids Surf B Biointerfaces, 2012, 97: 37–42.
CrossRef Google scholar
[77]
Kethineedi VR, Crivat G, Tarr MA, Quantum dot-NBD-liposome luminescent probes for monitoring phospholipase A(2) activity[J]. Anal Bioanal Chem, 2013, 405(30): 9729–9737.
CrossRef Google scholar
[78]
Zheng WW, Liu Y, West A, Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization[J]. J Am Chem Soc, 2014, 136(5): 1992–1999.
CrossRef Google scholar
[79]
Hansen MB, van Emmerik C, van Gaal E, Quick-and-easy preparation and purification of quantum dot-loaded liposomes[J]. J Nanopart Res, 2013, 15(1): 1340
CrossRef Google scholar
[80]
Batalla J, Cabrera H, San Martin-Martinez E, Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy[J]. Biomed Opt Express, 2015, 6(10): 3898–3906.
CrossRef Google scholar
[81]
Nomura T, Koreeda N, Yamashita F, Effect of Particle Size and Charge on the Disposition of Lipid Carriers After Intratumoral Injection into Tissue-isolated Tumors.[in English][J]. Pharm Res, 1998, 15(1): 128–132.
CrossRef Google scholar
[82]
Cedervall T, Lynch I, Lindman S, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc Natl Acad Sci USA, 2007, 104(7): 2050–2055.
CrossRef Google scholar
[83]
Nel AE, Madler L, Velegol D, Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7): 543–557.
CrossRef Google scholar
[84]
Monopoli MP, Aberg C, Salvati A, Biomolecular coronas provide the biological identity of nanosized materials[J]. Nat Nano, 2012, 7(12): 779–786.
CrossRef Google scholar
[85]
Tenzer S, Docter D, Kuharev J, Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology[J]. Nat Nano, 2013, 8(10): 772–781.
CrossRef Google scholar
[86]
Xia XR, Monteiro-Riviere NA, Riviere JE. An index for characterization of nanomaterials in biological systems[J]. Nat Nano, 2010, 5(9): 671–675.
CrossRef Google scholar
[87]
Bargheer D, Nielsen J, Gébel G, The fate of a designed protein corona on nanoparticles in vitro and in vivo[J]. Beilstein J Nanotechnol, 2015, 6: 36–46.
CrossRef Google scholar
[88]
Feliu N, Docter D, Heine M, In vivo degeneration and the fate of inorganic nanoparticles[J]. Chem Soc Rev, 2016, 45(9): 2440–2457.
CrossRef Google scholar
[89]
Soenen SJ, Parak WJ, Rejman J, (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications[J]. Chem Rev, 2015, 115(5): 2109–2135.
CrossRef Google scholar
[90]
Mahon E, Hristov DR, Dawson KA. Stabilising fluorescent silica nanoparticles against dissolution effects for biological studies[J]. Chem Commun (Camb), 2012, 48(64): 7970–7972.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved
PDF(491 KB)

Accesses

Citations

Detail

Sections
Recommended

/