Multifunctional quantum dots and liposome complexes in drug delivery
Qi Wang, Yimin Chao
Multifunctional quantum dots and liposome complexes in drug delivery
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.
liposomes / quantum dots / nanomedicine / drug delivery
[1] |
Mandal B, Bhattacharjee H, Mittal N,
CrossRef
Google scholar
|
[2] |
Tan SW, Li X, Guo YJ,
CrossRef
Google scholar
|
[3] |
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine[J]. Int J Nanomedicine, 2014, 9: 711–726.
|
[4] |
Jeong SH, Kim JH, Yi SM,
CrossRef
Google scholar
|
[5] |
Schütz CA, Juillerat-Jeanneret L, Mueller H,
CrossRef
Google scholar
|
[6] |
Shao K, Singha S, Clemente-Casares X,
CrossRef
Google scholar
|
[7] |
Kim CS, Duncan B, Creran B,
CrossRef
Google scholar
|
[8] |
Zrazhevskiy P, Sena M, Gao XH. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J]. Chem Soc Rev, 2010, 39(11): 4326–4354.
CrossRef
Google scholar
|
[9] |
Medintz IL, Uyeda HT, Goldman ER,
CrossRef
Google scholar
|
[10] |
Bozzuto G, Molinari A. Liposomes as nanomedical devices[J]. Int J Nanomedicine, 2015, 10: 975–999.
CrossRef
Google scholar
|
[11] |
Sailor MJ, Park JH. Hybrid Nanoparticles for Detection and Treatment of Cancer[J]. Adv Mater, 2012, 24(28): 3779–3802.
CrossRef
Google scholar
|
[12] |
Bangham AD, Horne RW. Negative staining of phospholipids+their structural modification by-surface active agents as observed in electron microscope[J]. J Mol Biol, 1964, 8(5): 660–668.
CrossRef
Google scholar
|
[13] |
Bangham AD, Hill MW, Miller NGA. Preparation and Use of Liposomes as Models of Biological Membranes. In: Korn E, editor[J]. Methods in Membrane Biology Springer US, 1974:1–68.
|
[14] |
Papahadjopoulos D, Kimelberg HK. Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins[J]. Prog Surf Sci, 1974, 4: 141–232.
CrossRef
Google scholar
|
[15] |
Allen TM, Hansen CB, Demenezes DEL. Pharmacokinetics of long-circulating liposomes.[in English][J]. Adv Drug Deliv Rev, 1995, 16(2–3): 267–284.
CrossRef
Google scholar
|
[16] |
Milla P, Dosio F, Cattel L. PEGylation of Proteins and Liposomes: a Powerful and Flexible Strategy to Improve the Drug Delivery[J]. Curr Drug Metab, 2012, 13(1): 105–119.
CrossRef
Google scholar
|
[17] |
Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics[J]. Clin Pharmacokinet, 2001, 40(7): 539–551.
CrossRef
Google scholar
|
[18] |
Howard MD, Jay M, Dziublal TD,
CrossRef
Google scholar
|
[19] |
Kirpotin D, Park JW, Hong K,
CrossRef
Google scholar
|
[20] |
Mamot C, Drummond DC, Greiser U,
|
[21] |
Hansen CB, Kao GY, Moase EH,
CrossRef
Google scholar
|
[22] |
Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs[J]. Adv Drug Deliv Rev, 1999, 40(1–2): 75–87.
CrossRef
Google scholar
|
[23] |
Akbarzadeh A, Rezaei-Sadabady R, Davaran S,
CrossRef
Google scholar
|
[24] |
Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations[J]. Asian Journal of Pharmaceutical Sciences, 2013, 8(2): 81–87.
CrossRef
Google scholar
|
[25] |
Laouini A, Jaafar-Maalej C, Limayem-Blouza I,
CrossRef
Google scholar
|
[26] |
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 1973, 298(4): 1015–1019.
CrossRef
Google scholar
|
[27] |
Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method[J]. Biochim Biophys Acta, 1976, 443(3): 629–634.
|
[28] |
Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation[J]. Proc Natl Acad Sci USA, 1978, 75(9): 4194–4198.
CrossRef
Google scholar
|
[29] |
Alpes H, Allmann K, Plattner H,
CrossRef
Google scholar
|
[30] |
Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes Containing Drug and Cyclodextrin Prepared by the One-Step Spray-Drying Method[J]. Drug Dev Ind Pharm, 2000, 26(12): 1279–1284.
CrossRef
Google scholar
|
[31] |
Li CL, Deng YJ. A novel method for the preparation of liposomes: Freeze drying of monophase solutions[J]. J Pharm Sci, 2004, 93(6): 1403–1414.
CrossRef
Google scholar
|
[32] |
Jahn A, Vreeland WN, Gaitan M,
CrossRef
Google scholar
|
[33] |
Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity[J]. Expert Opin Drug Deliv, 2011, 8(5): 565–580.
CrossRef
Google scholar
|
[34] |
Fritze A, Hens F, Kimpfler A,
CrossRef
Google scholar
|
[35] |
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications[J]. Adv Drug Deliv Rev, 2013, 65(1): 36–48.
CrossRef
Google scholar
|
[36] |
Zamboni WC. Concept and clinical evaluation of carrier-mediated anticancer agents[J]. Oncologist, 2008, 13(3): 248–260.
CrossRef
Google scholar
|
[37] |
Bladé J, Sonneveld P, Miguel JFS,
CrossRef
Google scholar
|
[38] |
Campos SM, Matulonis UA, Penson RT,
CrossRef
Google scholar
|
[39] |
Hann IM, Prentice HG. Lipid-based amphotericin B: A review of the last 10 years of use[J]. Int J Antimicrob Agents, 2001, 17(3): 161–169.
CrossRef
Google scholar
|
[40] |
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy[J]. Int J Nanomedicine, 2012, 7: 49–60.
|
[41] |
Fasol U, Frost A, Büchert M,
CrossRef
Google scholar
|
[42] |
Poon RTP, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer[J]. Future Oncol, 2011, 7(8): 937–945.
CrossRef
Google scholar
|
[43] |
McDonagh CF, Huhalov A, Harms BD,
CrossRef
Google scholar
|
[44] |
Bangal M, Ashtaputre S, Marathe S,
CrossRef
Google scholar
|
[45] |
Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals[J]. J Phys Chem, 1996, 100(31): 13226–13239.
CrossRef
Google scholar
|
[46] |
Weller H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules[J]. Angew Chem Int Ed Engl, 1993, 32(1): 41–53.
CrossRef
Google scholar
|
[47] |
Weller H. Quantized Semiconductor Particles: A novel state of matter for materials science[J]. Adv Mater, 1993, 5(2): 88–95.
CrossRef
Google scholar
|
[48] |
Talapin DV, Lee JS, Kovalenko MV,
CrossRef
Google scholar
|
[49] |
Chan WCW, Maxwell DJ, Gao XH,
CrossRef
Google scholar
|
[50] |
Pickett NL, O’Brien P. Syntheses of semiconductor nanoparticles using single-molecular precursors[J]. Chem Rec, 2001, 1(6): 467–479.
CrossRef
Google scholar
|
[51] |
Chan WCW, Maxwell DJ, Gao X,
CrossRef
Google scholar
|
[52] |
Michalet X, Pinaud FF, Bentolila LA,
CrossRef
Google scholar
|
[53] |
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S,
CrossRef
Google scholar
|
[54] |
Chen CS, Yao J, Durst R. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles.[in English][J]. J Nanopart Res, 2006, 8(6): 1033–1038.
CrossRef
Google scholar
|
[55] |
OberdörsterG, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles[J]. Environ Health Perspect, 2005, 113(7): 823–839.
CrossRef
Google scholar
|
[56] |
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1): 26–49.
CrossRef
Google scholar
|
[57] |
Karakoti AS, Shukla R, Shanker R,
CrossRef
Google scholar
|
[58] |
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chem Soc Rev, 2015, 44(14): 4792–4834.
CrossRef
Google scholar
|
[59] |
Clarke SJ, Hollmann CA, Zhang Z,
CrossRef
Google scholar
|
[60] |
Smith AM, Duan H, Rhyner MN,
CrossRef
Google scholar
|
[61] |
Tian B, Al-Jamal WT, Al-Jamal KT,
CrossRef
Google scholar
|
[62] |
Tian BW, Al-Jamal WT, Kostarelos K. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics[J]. Chin Phys B, 2014, 23(8): 087805.
|
[63] |
Gopalakrishnan G, Danelon C, Izewska P,
CrossRef
Google scholar
|
[64] |
Al-Jamal WT, Al-Jamal KT, Tian B,
CrossRef
Google scholar
|
[65] |
Al-Jamal WT, Al-Jamal KT, Cakebread A,
CrossRef
Google scholar
|
[66] |
Bothun GD, Rabideau AE, Stoner MA. Hepatoma Cell Uptake of Cationic Multifluorescent Quantum Dot Liposomes[J]. J Phys Chem B, 2009, 113(22): 7725–7728.
CrossRef
Google scholar
|
[67] |
Ye C, Wang YQ, Li CG,
CrossRef
Google scholar
|
[68] |
Zhang LW, Wen CJ, Al-Suwayeh SA,
CrossRef
Google scholar
|
[69] |
Voura EB, Jaiswal JK, Mattoussi H,
CrossRef
Google scholar
|
[70] |
Weng KC, Noble CO, Papahadjopoulos-Sternberg B,
CrossRef
Google scholar
|
[71] |
Sigot V, Arndt-Jovin DJ, Jovin TM. Targeted Cellular Delivery of Quantum Dots Loaded on and in Biotinylated Liposomes[J]. Bioconjug Chem, 2010, 21(8): 1465–1472.
CrossRef
Google scholar
|
[72] |
Chu M, Zhuo S, Xu J,
CrossRef
Google scholar
|
[73] |
Wang JY, Zhao JF, Wang PN,
CrossRef
Google scholar
|
[74] |
Al-Jamal WT, Al-Jamal KT, Bomans PH,
CrossRef
Google scholar
|
[75] |
Al-Jamal WT, Al-Jamal KT, Tian B,
CrossRef
Google scholar
|
[76] |
Wi HS, Kim SJ, Lee K,
CrossRef
Google scholar
|
[77] |
Kethineedi VR, Crivat G, Tarr MA,
CrossRef
Google scholar
|
[78] |
Zheng WW, Liu Y, West A,
CrossRef
Google scholar
|
[79] |
Hansen MB, van Emmerik C, van Gaal E,
CrossRef
Google scholar
|
[80] |
Batalla J, Cabrera H, San Martin-Martinez E,
CrossRef
Google scholar
|
[81] |
Nomura T, Koreeda N, Yamashita F,
CrossRef
Google scholar
|
[82] |
Cedervall T, Lynch I, Lindman S,
CrossRef
Google scholar
|
[83] |
Nel AE, Madler L, Velegol D,
CrossRef
Google scholar
|
[84] |
Monopoli MP, Aberg C, Salvati A,
CrossRef
Google scholar
|
[85] |
Tenzer S, Docter D, Kuharev J,
CrossRef
Google scholar
|
[86] |
Xia XR, Monteiro-Riviere NA, Riviere JE. An index for characterization of nanomaterials in biological systems[J]. Nat Nano, 2010, 5(9): 671–675.
CrossRef
Google scholar
|
[87] |
Bargheer D, Nielsen J, Gébel G,
CrossRef
Google scholar
|
[88] |
Feliu N, Docter D, Heine M,
CrossRef
Google scholar
|
[89] |
Soenen SJ, Parak WJ, Rejman J,
CrossRef
Google scholar
|
[90] |
Mahon E, Hristov DR, Dawson KA. Stabilising fluorescent silica nanoparticles against dissolution effects for biological studies[J]. Chem Commun (Camb), 2012, 48(64): 7970–7972.
CrossRef
Google scholar
|
/
〈 | 〉 |