Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte

Robert Scott Kiss, Allan Sniderman

PDF(266 KB)
PDF(266 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (2) : 95-107. DOI: 10.7555/JBR.31.20160139
Review Article

Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte

Author information +
History +

Abstract

The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.

Keywords

ACAT2 / cholesterol / hepatocyte / HMGCR / LDLR

Cite this article

Download citation ▾
Robert Scott Kiss, Allan Sniderman. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. Journal of Biomedical Research, 2017, 31(2): 95‒107 https://doi.org/10.7555/JBR.31.20160139

References

[1]
Brown AJ, Galea AM. Cholesterol as an evolutionary response to living with oxygen[J]. Evolution, 2010, 64(7): 2179–2183.
CrossRef Pubmed Google scholar
[2]
Souza CM, Schwabe TM, Pichler H, A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance[J]. Metab Eng, 2011, 13(5): 555–569.
CrossRef Pubmed Google scholar
[3]
Matyash V, Geier C, Henske A, Distribution and transport of cholesterol in Caenorhabditis elegans[J]. Mol Biol Cell, 2001, 12(6): 1725–1736
Pubmed
[4]
Anderson JL,Carten JD, Farber SA. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking[J]. Methods Cell Biol, 2016, 133: 165–178
CrossRef Google scholar
[5]
Yun HK, Jouni ZE, Wells MA. Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae[J]. Insect Biochem Mol Biol, 2002, 32(9): 1151–1158
Pubmed
[6]
Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL[J]. J Lipid Res, 2009, 50(Suppl): S15–S27.
CrossRef Pubmed Google scholar
[7]
Ghosh S. Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases[J]. Curr Opin Endocrinol Diabetes Obes, 2012, 19(2): 136–141.
CrossRef Pubmed Google scholar
[8]
Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis[J]. Cell Mol Life Sci, 2012, 69(6): 915–930.
CrossRef Pubmed Google scholar
[9]
Goldstein JL, Brown MS. The LDL receptor[J]. Arterioscler Thromb Vasc Biol, 2009, 29(4): 431–438.
CrossRef Pubmed Google scholar
[10]
Liu M, Chung S, Shelness GS, Hepatic ABCA1 and VLDL triglyceride production[J]. Biochim Biophys Acta, 2012, 1821(5): 770–777.
CrossRef Pubmed Google scholar
[11]
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells[J]. Curr Opin Cell Biol, 2010, 22(4): 422–429.
CrossRef Pubmed Google scholar
[12]
Rogers MA, Liu J, Song BL, Acyl-CoA: cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators[J]. J Steroid Biochem Mol Biol, 2015, 151: 102–107.
CrossRef Google scholar
[13]
Seidah NG, Awan Z, Chrétien M, PCSK9: a key modulator of cardiovascular health[J]. Circ Res, 2014, 114(6): 1022–1036.
CrossRef Pubmed Google scholar
[14]
Strong A, Patel K, Rader DJ. Sortilin and lipoprotein metabolism: making sense out of complexity[J]. Curr Opin Lipidol, 2014, 25(5): 350–357.
CrossRef Pubmed Google scholar
[15]
van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis[J]. Mol Cell Endocrinol, 2013, 368(1-2): 1–16.
CrossRef Pubmed Google scholar
[16]
Ye J, DeBose-Boyd RA. Regulation of cholesterol and fatty acid synthesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(7): a004754.
CrossRef Google scholar
[17]
Zhang L, Reue K, Fong LG, Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2541–2546.
CrossRef Pubmed Google scholar
[18]
Hampton RY. Cholesterol homeostasis: ESCAPe from the ER[J]. Curr Biol, 2000, 10(8): R298–R301
Pubmed
[19]
Rawson RB. The site-2 protease[J]. Biochim Biophys Acta, 2013, 1828(12): 2801–2807.
CrossRef Pubmed Google scholar
[20]
Gong Y, Lee JN, Lee PC, Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake[J]. Cell Metab, 2006, 3(1): 15–24
Pubmed
[21]
Radhakrishnan A, Ikeda Y, Kwon HJ, Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig[J]. Proc Natl Acad Sci U S A, 2007, 104(16): 6511–6518
Pubmed
[22]
Zelcer N, Hong C, Boyadjian R, LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J]. Science, 2009, 325(5936): 100–104.
CrossRef Pubmed Google scholar
[23]
Hong C, Marshall SM, McDaniel AL, The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice[J]. Cell Metab, 2014, 20(5): 910–918.
CrossRef Pubmed Google scholar
[24]
Hartman IZ, Liu P, Zehmer JK, Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets[J]. J Biol Chem, 2010, 285(25): 19288–19298.
CrossRef Pubmed Google scholar
[25]
Morris LL, Hartman IZ, Jun DJ, Sequential actions of the AAA-ATPase valosin-containing protein (VCP)/p97 and the proteasome 19 S regulatory particle in sterol-accelerated, endoplasmic reticulum (ER)-associated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. J Biol Chem, 2014, 289(27): 19053–19066.
CrossRef Pubmed Google scholar
[26]
Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase[J]. Mol Cell, 2005, 19(6): 829–840
Pubmed
[27]
Tsai YC, Leichner GS, Pearce MM, Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system[J]. Mol Biol Cell, 2012, 23(23): 4484–4494.
CrossRef Pubmed Google scholar
[28]
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)[J]. J Biol Chem, 2013, 288(26): 18707–18715.
CrossRef Pubmed Google scholar
[29]
Do R, Kiss RS, Gaudet D, Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway[J]. Clin Genet, 2009, 75(1): 19–29.
CrossRef Pubmed Google scholar
[30]
Loregger A, Cook EC, Nelson JK, A MARCH6 and IDOL E3 ubiquitin ligase circuit uncouples cholesterol synthesis from lipoprotein uptake in hepatocytes[J]. Mol Cell Biol, 2015, 36(2): 285–294.
CrossRef Pubmed Google scholar
[31]
Zelcer N, Sharpe LJ, Loregger A, The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway[J]. Mol Cell Biol, 2014, 34(7): 1262–1270.
CrossRef Pubmed Google scholar
[32]
Luu W, Sharpe LJ, Capell-Hattam I, Oxysterols: Old Tale, New Twists[J]. Annu Rev Pharmacol Toxicol, 2016, 56: 447–467.
CrossRef Google scholar
[33]
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators[J]. Prog Lipid Res, 2016, 64: 152–169
CrossRef Google scholar
[34]
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis[J]. Atherosclerosis, 2015, 242(1): 29–36.
CrossRef Pubmed Google scholar
[35]
Shibata N, Glass CK. Macrophages, oxysterols and atherosclerosis[J]. Circ J, 2010, 74(10): 2045–2051
Pubmed
[36]
Bauer RC, Khetarpal SA, Hand NJ, Therapeutic targets of triglyceride metabolism as informed by human genetics[J]. Trends Mol Med, 2016, 22(4): 328–340.
CrossRef Pubmed Google scholar
[37]
Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis[J]. Clin Mol Hepatol, 2013, 19(3): 210–215.
CrossRef Pubmed Google scholar
[38]
Moore KJ, Rayner KJ, Suárez Y, The role of microRNAs in cholesterol efflux and hepatic lipid metabolism[J]. Annu Rev Nutr, 2011, 31: 49–63.
CrossRef Google scholar
[39]
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175–191.
CrossRef Pubmed Google scholar
[40]
Tavori H, Rashid S, Fazio S. On the function and homeostasis of PCSK9: reciprocal interaction with LDLR and additional lipid effects[J]. Atherosclerosis, 2015, 238(2): 264–270
CrossRef Pubmed Google scholar
[41]
Zhong LY, Cayabyab FS, Tang CK, Sortilin: A novel regulator in lipid metabolism and atherogenesis[J]. Clin Chim Acta, 2016, 460: 11–17.
CrossRef Google scholar
[42]
Kim K, Utoh R, Ohashi K, Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro[J]. J Tissue Eng Regen Med, 2015
Pubmed
[43]
Homolya L, Fu D, Sengupta P, LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes[J]. PLoS One, 2014, 9(3): e91921
CrossRef Google scholar
[44]
Le Vee M, Jouan E, Noel G, Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes[J]. Toxicol In Vitro, 2015, 29(5): 938–946.
CrossRef Pubmed Google scholar
[45]
Levy G, Bomze D, Heinz S, Long-term culture and expansion of primary human hepatocytes[J]. Nat Biotechnol, 2015, 33(12): 1264–1271.
CrossRef Pubmed Google scholar
[46]
Gao Y, Shen W, Lu B, Upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate[J]. J Lipid Res, 2014, 55(8): 1622–1633.
CrossRef Pubmed Google scholar
[47]
Roubtsova A, Chamberland A, Marcinkiewicz J, PCSK9 deficiency unmasks a sex- and tissue-specific subcellular distribution of the LDL and VLDL receptors in mice[J]. J Lipid Res, 2015, 56(11): 2133–2142.
CrossRef Pubmed Google scholar
[48]
Roubtsova A, Munkonda MN, Awan Z, Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue[J]. Arterioscler Thromb Vasc Biol, 2011, 31(4): 785–791.
CrossRef Pubmed Google scholar
[49]
Jo H, Choe SS, Shin KC, Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor[J]. Hepatology, 2013, 57(4): 1366–1377.
CrossRef Pubmed Google scholar
[50]
Gonias SL, Campana WM. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system[J]. Am J Pathol, 2014, 184(1): 18–27.
CrossRef Pubmed Google scholar
[51]
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies[J]. Physiol Rev, 2008, 88(3): 887–918.
CrossRef Pubmed Google scholar
[52]
May P. The low-density lipoprotein receptor-related protein 1 in inflammation[J]. Curr Opin Lipidol, 2013, 24(2): 134–137.
CrossRef Pubmed Google scholar
[53]
Ma CI, Martin C, Ma Z, Engulfment protein GULP is regulator of transforming growth factor-β response in ovarian cells[J]. J Biol Chem, 2012, 287(24): 20636–20651.
CrossRef Pubmed Google scholar
[54]
Muratoglu SC, Belgrave S, Lillis AP, Macrophage LRP1 suppresses neo-intima formation during vascular remodeling by modulating the TGF-β signaling pathway[J]. PLoS One, 2011, 6(12): e28846
CrossRef Pubmed Google scholar
[55]
Borrell-Pages M, Carolina Romero J, Badimon L. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes[J]. Immunol Cell Biol, 2015, 93(7): 653–661.
CrossRef Pubmed Google scholar
[56]
Kysenius K, Muggalla P, Mätlik K, PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling[J]. Cell Mol Life Sci, 2012, 69(11): 1903–1916.
CrossRef Pubmed Google scholar
[57]
Joiner DM, Ke J, Zhong Z, LRP5 and LRP6 in development and disease[J]. Trends Endocrinol Metab, 2013, 24(1): 31–39.
CrossRef Pubmed Google scholar
[58]
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12): a007880.
CrossRef Google scholar
[59]
Bock HH, May P. Canonical and Non-canonical Reelin Signaling[J]. Front Cell Neurosci, 2016, 10: 166
CrossRef Google scholar
[60]
Ranaivoson FM, Daake Sv, Comoletti D. Structural Insights into Reelin Function: Present and Future[J]. Front Cell Neurosci, 2016, 10: 137.
CrossRef Google scholar
[61]
Saddar S, Carriere V, Lee WR, Scavenger receptor class B type I is a plasma membrane cholesterol sensor[J]. Circ Res, 2013, 112(1): 140–151
CrossRef Pubmed Google scholar
[62]
Shen WJ, Hu J, Hu Z, Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions[J]. Metabolism, 2014, 63(7): 875–886.
CrossRef Pubmed Google scholar
[63]
Martinez LO, Jacquet S, Esteve JP, Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis[J]. Nature, 2003, 421(6918): 75–79
Pubmed
[64]
Lichtenstein L, Serhan N, Annema W, Lack of P2Y13 in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport[J]. Nutr Metab (Lond), 2013, 10(1): 67
CrossRef Pubmed Google scholar
[65]
Lichtenstein L, Serhan N, Espinosa-Delgado S, Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport[J]. Cardiovasc Res, 2015, 106(2): 314–323.
CrossRef Pubmed Google scholar
[66]
Goffinet M, Tardy C, Boubekeur N, P2Y13 receptor regulates HDL metabolism and atherosclerosis in vivo[J]. PLoS One, 2014, 9(4): e95807.
CrossRef Google scholar
[67]
Blom D, Yamin TT, Champy MF, Altered lipoprotein metabolism in P2Y(13) knockout mice[J]. Biochim Biophys Acta, 2010, 1801(12): 1349–1360.
CrossRef Pubmed Google scholar
[68]
Fabre AC, Vantourout P, Champagne E, Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y (13)-mediated HDL endocytosis pathway on human hepatocytes[J]. Cell Mol Life Sci, 2006, 63(23): 2829–2837
Pubmed
[69]
Hu L, van der Hoogt CC, Espirito Santo SM, The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI[J]. J Lipid Res, 2008, 49(7): 1553–1561.
CrossRef Pubmed Google scholar
[70]
Pangburn SH, Newton RS, Chang CM, Receptor-mediated catabolism of homologous low density lipoproteins in cultured pig hepatocytes[J]. J Biol Chem, 1981, 256(7): 3340–3347
Pubmed
[71]
Cohen LH, Princen HM, Kwekkeboom J, Regulation of cholesterol metabolism in the liver in vivo and in vitro[J]. Biochem Soc Trans, 1987, 15(3): 339–340
Pubmed
[72]
Havekes LM, de Wit EC, Princen HM. Cellular free cholesterol in Hep G2 cells is only partially available for down-regulation of low-density-lipoprotein receptor activity[J]. Biochem J, 1987, 247(3): 739–746
Pubmed
[73]
Havekes LM, Schouten D, de Wit EC, Stimulation of the LDL receptor activity in the human hepatoma cell line Hep G2 by high-density serum fractions[J]. Biochim Biophys Acta, 1986, 875(2): 236–246
Pubmed
[74]
Havekes LM, Verboom H, de Wit E, Regulation of low density lipoprotein receptor activity in primary cultures of human hepatocytes by serum lipoproteins[J]. Hepatology, 1986, 6(6): 1356–1360
Pubmed
[75]
Christoffersen M, Tybjærg-Hansen A. Novel genes in LDL metabolism--a comprehensive overview[J]. Curr Opin Lipidol, 2015, 26(3): 179–187.
CrossRef Pubmed Google scholar
[76]
Kjolby M, Nielsen MS, Petersen CM. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease[J]. Curr Atheroscler Rep, 2015, 17(4): 496
CrossRef Pubmed Google scholar
[77]
Sniderman AD, De Graaf J, Couture P, Regulation of plasma LDL: the apoB paradigm[J]. Clin Sci (Lond), 2009, 118(5): 333–339.
CrossRef Pubmed Google scholar
[78]
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion[J]. J Biomed Res, 2014, 28(3): 178–193.
CrossRef Pubmed Google scholar
[79]
Sirtori CR, Pavanello C, Bertolini S. Microsomal transfer protein (MTP) inhibition-a novel approach to the treatment of homozygous hypercholesterolemia[J]. Ann Med, 2014, 46(7): 464–474.
CrossRef Pubmed Google scholar
[80]
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2104–2112.
CrossRef Pubmed Google scholar
[81]
Yao Z. Human apolipoprotein C-III- a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins[J]. Cardiovasc Hematol Disord Drug Targets, 2012, 12(2): 133–140
Pubmed
[82]
Lange Y, Steck TL. Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol[J]. Prog Lipid Res, 2008, 47(5): 319–332.
CrossRef Pubmed Google scholar
[83]
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector[J]. Chem Phys Lipids, 2016, 199: 74–93.
CrossRef Google scholar
[84]
Lange Y, Ye J, Steck TL. Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments[J]. PLoS One, 2014, 9(7): e98482
CrossRef Google scholar
[85]
Poirier S, Mayer G, Benjannet S, The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2[J]. J Biol Chem, 2008, 283(4): 2363–2372
Pubmed
[86]
Sniderman AD, Qi Y, Ma CI, Hepatic cholesterol homeostasis: is the low-density lipoprotein pathway a regulatory or a shunt pathway[J]? Arterioscler Thromb Vasc Biol, 2013, 33(11): 2481–2490.
CrossRef Pubmed Google scholar
[87]
Zhang Y, Ma KL, Ruan XZ, Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury[J]. Int J Biol Sci, 2016, 12(5): 569–579
CrossRef Google scholar
[88]
Ai D, Chen C, Han S, Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice[J]. J Clin Invest, 2012, 122(4): 1262–1270.
CrossRef Pubmed Google scholar
[89]
Davis WJr, Boyd JT, Ile KE, Human ATP-binding cassette transporter-2 (ABCA2) positively regulates low-density lipoprotein receptor expression and negatively regulates cholesterol esterification in Chinese hamster ovary cells[J]. Biochim Biophys Acta, 2004, 1683(1-3): 89–100
Pubmed
[90]
Di Croce L, Bruscalupi G, Trentalance A. Independent behavior of rat liver LDL receptor and HMGCoA reductase under estrogen treatment[J]. Biochem Biophys Res Commun, 1996, 224(2): 345–350
Pubmed
[91]
Lee YJ, Han DH, Pak YK, Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6[J]. Exp Mol Med, 2012, 44(11): 642–652
CrossRef Pubmed Google scholar
[92]
Liu J, Ma KL, Zhang Y, Activation of mTORC1 disrupted LDL receptor pathway: a potential new mechanism for the progression of non-alcoholic fatty liver disease[J]. Int J Biochem Cell Biol, 2015, 61: 8–19.
CrossRef Google scholar
[93]
Lorbek G, Perše M, Horvat S, Sex differences in the hepatic cholesterol sensing mechanisms in mice[J]. Molecules, 2013, 18(9): 11067–11085.
CrossRef Pubmed Google scholar
[94]
Osono Y, Woollett LA, Herz J, Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse[J]. J Clin Invest, 1995, 95(3): 1124–1132
Pubmed
[95]
Truong TQ, Auger A, Denizeau F, Analysis of low-density lipoprotein catabolism by primary cultures of hepatic cells from normal and low-density lipoprotein receptor knockout mice[J]. Biochim Biophys Acta, 2000, 1484(2-3): 307–315
Pubmed
[96]
Goedeke L, Rotllan N, Canfrán-Duque A, MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels[J]. Nat Med, 2015, 21(11): 1280–1289.
CrossRef Pubmed Google scholar
[97]
Ma KL, Ruan XZ, Powis SH, Sirolimus modifies cholesterol homeostasis in hepatic cells: a potential molecular mechanism for sirolimus-associated dyslipidemia[J]. Transplantation, 2007, 84(8): 1029–1036
Pubmed
[98]
Ma KL, Ruan XZ, Powis SH, Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice[J]. Hepatology, 2008, 48(3): 770–781.
CrossRef Pubmed Google scholar
[99]
Zhao L, Chen Y, Tang R, Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis[J]. J Gastroenterol Hepatol, 2011, 26(5): 875–883.
CrossRef Pubmed Google scholar
[100]
Wang MD, Franklin V, Sundaram M, Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages[J]. J Biol Chem, 2007, 282(31): 22525–22533
Pubmed
[101]
Dichek HL, Johnson SM, Akeefe H, Hepatic lipase overexpression lowers remnant and LDL levels by a noncatalytic mechanism in LDL receptor-deficient mice[J]. J Lipid Res, 2001, 42(2): 201–210
Pubmed
[102]
Harders-Spengel K, Wood CB, Thompson GR, Difference in saturable binding of low density lipoprotein to liver membranes from normocholesterolemic subjects and patients with heterozygous familial hypercholesterolemia[J]. Proc Natl Acad Sci U S A, 1982, 79(20): 6355–6359
Pubmed
[103]
Karavia EA, Papachristou NI, Sakellaropoulos GC, Scavenger receptor class b type i regulates plasma apolipoprotein e levels and dietary lipid deposition to the liver[J]. Biochemistry, 2015, 54(36): 5605–5616.
CrossRef Pubmed Google scholar
[104]
Kartz GA, Holme RL, Nicholson K, SR-BI/CD36 chimeric receptors define extracellular subdomains of SR-BI critical for cholesterol transport[J]. Biochemistry, 2014, 53(39): 6173–6182.
CrossRef Pubmed Google scholar
[105]
Kim DH, Inagaki Y, Suzuki T, A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein[J] E. J Biochem, 1998, 124(6): 1072–1076
Pubmed
[106]
Rein-Fischboeck L, Krautbauer S, Eisinger K, Hepatic scavenger receptor BI is associated with type 2 diabetes but unrelated to human and murine non-alcoholic fatty liver disease[J]. Biochem Biophys Res Commun, 2015, 467(2): 377–382
CrossRef Pubmed Google scholar
[107]
Strong A, Ding Q, Edmondson AC, Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism[J]. J Clin Invest, 2012, 122(8): 2807–2816.
CrossRef Pubmed Google scholar
[108]
Ye ZJ, Go GW, Singh R, LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake[J]. J Biol Chem, 2012, 287(2): 1335–1344.
CrossRef Pubmed Google scholar
[109]
Scott CC, Vossio S, Vacca F, Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis[J]. EMBO Rep, 2015, 16(6): 741–752.
CrossRef Pubmed Google scholar
[110]
Wu GY, Wu CH, Rifici VA, Activity and regulation of low density lipoprotein receptors in a human hepatoblastoma cell line[J]. Hepatology, 1984, 4(6): 1190–1194
Pubmed
[111]
Olofsson SO, Borén J. Apolipoprotein B secretory regulation by degradation[J]. Arterioscler Thromb Vasc Biol, 2012, 32(6): 1334–1338.
CrossRef Pubmed Google scholar
[112]
Yao Z, Zhou H, Figeys D, Microsome-associated lumenal lipid droplets in the regulation of lipoprotein secretion[J]. Curr Opin Lipidol, 2013, 24(2): 160–170.
CrossRef Pubmed Google scholar
[113]
Zhang Z, Cianflone K, Sniderman AD. Role of cholesterol ester mass in regulation of secretion of ApoB100 lipoprotein particles by hamster hepatocytes and effects of statins on that relationship[J]. Arterioscler Thromb Vasc Biol, 1999, 19(3): 743–752
Pubmed
[114]
Sahoo D, Trischuk TC, Chan T, ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes[J]. J Lipid Res, 2004, 45(6): 1122–1131
Pubmed
[115]
Twisk J, Gillian-Daniel DL, Tebon A, The role of the LDL receptor in apolipoprotein B secretion[J]. J Clin Invest, 2000, 105(4): 521–532
Pubmed
[116]
Temel RE, Hou L, Rudel LL, ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins[J]. J Lipid Res, 2007, 48(7): 1618–1627
Pubmed
[117]
Alger HM, Brown JM, Sawyer JK, Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization[J]. J Biol Chem, 2010, 285(19): 14267–14274
CrossRef Pubmed Google scholar
[118]
Melchior JT, Olson JD, Kelley KL, Targeted knockdown of hepatic soat2 with antisense oligonucleotides stabilizes atherosclerotic plaque in ApoB100-only LDLr-/- mice[J]. Arterioscler Thromb Vasc Biol, 2015, 35(9): 1920–1927.
CrossRef Pubmed Google scholar
[119]
Ohshiro T, Ohtawa M, Nagamitsu T, New pyripyropene A derivatives, highly SOAT2-selective inhibitors, improve hypercholesterolemia and atherosclerosis in atherogenic mouse models[J]. J Pharmacol Exp Ther, 2015, 355(2): 299–307
CrossRef Pubmed Google scholar
[120]
Zhang J, Sawyer JK, Marshall SM, Cholesterol esters (CE) derived from hepatic sterol O-acyltransferase 2 (SOAT2) are associated with more atherosclerosis than CE from intestinal SOAT2[J]. Circ Res, 2014, 115(10): 826–833.
CrossRef Pubmed Google scholar
[121]
Pedrelli M, Davoodpour P, Degirolamo C, Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice[J]. PLoS One, 2014, 9(4): e93552
CrossRef Google scholar
[122]
Marshall SM, Gromovsky AD, Kelley KL, Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion[J]. PLoS One, 2014, 9(6): e98953.
CrossRef Google scholar
[123]
Meyer JM, Graf GA, van der Westhuyzen DR. New developments in selective cholesteryl ester uptake[J]. Curr Opin Lipidol, 2013, 24(5): 386–392.
CrossRef Pubmed Google scholar
[124]
Harder CJ, Meng A, Rippstein P, SR-BI undergoes cholesterol-stimulated transcytosis to the bile canaliculus in polarized WIF-B cells[J]. J Biol Chem, 2007, 282(2): 1445–1455
Pubmed
[125]
Ji Y, Wang N, Ramakrishnan R, Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile[J]. J Biol Chem, 1999, 274(47): 33398–33402
Pubmed
[126]
Kozarsky KF, Donahee MH, Rigotti A, Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels[J]. Nature, 1997, 387(6631): 414–417
Pubmed
[127]
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile[J]. J Lipid Res, 2016, 57(9): 1712–1719.
CrossRef Pubmed Google scholar
[128]
Rai AK, Spolaore B, Harris DA, Ectopic F0F 1 ATP synthase contains both nuclear and mitochondrially-encoded subunits[J]. J Bioenerg Biomembr, 2013, 45(6): 569–579.
CrossRef Pubmed Google scholar
[129]
Robins SJ, Fasulo JM. High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile[J]. J Clin Invest, 1997, 99(3): 380–384
Pubmed

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved
PDF(266 KB)

Accesses

Citations

Detail

Sections
Recommended

/