Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte
Robert Scott Kiss, Allan Sniderman
Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
ACAT2 / cholesterol / hepatocyte / HMGCR / LDLR
[1] |
Brown AJ, Galea AM. Cholesterol as an evolutionary response to living with oxygen[J]. Evolution, 2010, 64(7): 2179–2183.
CrossRef
Pubmed
Google scholar
|
[2] |
Souza CM, Schwabe TM, Pichler H,
CrossRef
Pubmed
Google scholar
|
[3] |
Matyash V, Geier C, Henske A,
Pubmed
|
[4] |
Anderson JL,Carten JD, Farber SA. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking[J]. Methods Cell Biol, 2016, 133: 165–178
CrossRef
Google scholar
|
[5] |
Yun HK, Jouni ZE, Wells MA. Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae[J]. Insect Biochem Mol Biol, 2002, 32(9): 1151–1158
Pubmed
|
[6] |
Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL[J]. J Lipid Res, 2009, 50(Suppl): S15–S27.
CrossRef
Pubmed
Google scholar
|
[7] |
Ghosh S. Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases[J]. Curr Opin Endocrinol Diabetes Obes, 2012, 19(2): 136–141.
CrossRef
Pubmed
Google scholar
|
[8] |
Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis[J]. Cell Mol Life Sci, 2012, 69(6): 915–930.
CrossRef
Pubmed
Google scholar
|
[9] |
Goldstein JL, Brown MS. The LDL receptor[J]. Arterioscler Thromb Vasc Biol, 2009, 29(4): 431–438.
CrossRef
Pubmed
Google scholar
|
[10] |
Liu M, Chung S, Shelness GS,
CrossRef
Pubmed
Google scholar
|
[11] |
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells[J]. Curr Opin Cell Biol, 2010, 22(4): 422–429.
CrossRef
Pubmed
Google scholar
|
[12] |
Rogers MA, Liu J, Song BL,
CrossRef
Google scholar
|
[13] |
Seidah NG, Awan Z, Chrétien M,
CrossRef
Pubmed
Google scholar
|
[14] |
Strong A, Patel K, Rader DJ. Sortilin and lipoprotein metabolism: making sense out of complexity[J]. Curr Opin Lipidol, 2014, 25(5): 350–357.
CrossRef
Pubmed
Google scholar
|
[15] |
van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis[J]. Mol Cell Endocrinol, 2013, 368(1-2): 1–16.
CrossRef
Pubmed
Google scholar
|
[16] |
Ye J, DeBose-Boyd RA. Regulation of cholesterol and fatty acid synthesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(7): a004754.
CrossRef
Google scholar
|
[17] |
Zhang L, Reue K, Fong LG,
CrossRef
Pubmed
Google scholar
|
[18] |
Hampton RY. Cholesterol homeostasis: ESCAPe from the ER[J]. Curr Biol, 2000, 10(8): R298–R301
Pubmed
|
[19] |
Rawson RB. The site-2 protease[J]. Biochim Biophys Acta, 2013, 1828(12): 2801–2807.
CrossRef
Pubmed
Google scholar
|
[20] |
Gong Y, Lee JN, Lee PC,
Pubmed
|
[21] |
Radhakrishnan A, Ikeda Y, Kwon HJ,
Pubmed
|
[22] |
Zelcer N, Hong C, Boyadjian R,
CrossRef
Pubmed
Google scholar
|
[23] |
Hong C, Marshall SM, McDaniel AL,
CrossRef
Pubmed
Google scholar
|
[24] |
Hartman IZ, Liu P, Zehmer JK,
CrossRef
Pubmed
Google scholar
|
[25] |
Morris LL, Hartman IZ, Jun DJ,
CrossRef
Pubmed
Google scholar
|
[26] |
Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase[J]. Mol Cell, 2005, 19(6): 829–840
Pubmed
|
[27] |
Tsai YC, Leichner GS, Pearce MM,
CrossRef
Pubmed
Google scholar
|
[28] |
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)[J]. J Biol Chem, 2013, 288(26): 18707–18715.
CrossRef
Pubmed
Google scholar
|
[29] |
Do R, Kiss RS, Gaudet D,
CrossRef
Pubmed
Google scholar
|
[30] |
Loregger A, Cook EC, Nelson JK,
CrossRef
Pubmed
Google scholar
|
[31] |
Zelcer N, Sharpe LJ, Loregger A,
CrossRef
Pubmed
Google scholar
|
[32] |
Luu W, Sharpe LJ, Capell-Hattam I,
CrossRef
Google scholar
|
[33] |
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators[J]. Prog Lipid Res, 2016, 64: 152–169
CrossRef
Google scholar
|
[34] |
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis[J]. Atherosclerosis, 2015, 242(1): 29–36.
CrossRef
Pubmed
Google scholar
|
[35] |
Shibata N, Glass CK. Macrophages, oxysterols and atherosclerosis[J]. Circ J, 2010, 74(10): 2045–2051
Pubmed
|
[36] |
Bauer RC, Khetarpal SA, Hand NJ,
CrossRef
Pubmed
Google scholar
|
[37] |
Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis[J]. Clin Mol Hepatol, 2013, 19(3): 210–215.
CrossRef
Pubmed
Google scholar
|
[38] |
Moore KJ, Rayner KJ, Suárez Y,
CrossRef
Google scholar
|
[39] |
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175–191.
CrossRef
Pubmed
Google scholar
|
[40] |
Tavori H, Rashid S, Fazio S. On the function and homeostasis of PCSK9: reciprocal interaction with LDLR and additional lipid effects[J]. Atherosclerosis, 2015, 238(2): 264–270
CrossRef
Pubmed
Google scholar
|
[41] |
Zhong LY, Cayabyab FS, Tang CK,
CrossRef
Google scholar
|
[42] |
Kim K, Utoh R, Ohashi K,
Pubmed
|
[43] |
Homolya L, Fu D, Sengupta P,
CrossRef
Google scholar
|
[44] |
Le Vee M, Jouan E, Noel G,
CrossRef
Pubmed
Google scholar
|
[45] |
Levy G, Bomze D, Heinz S,
CrossRef
Pubmed
Google scholar
|
[46] |
Gao Y, Shen W, Lu B,
CrossRef
Pubmed
Google scholar
|
[47] |
Roubtsova A, Chamberland A, Marcinkiewicz J,
CrossRef
Pubmed
Google scholar
|
[48] |
Roubtsova A, Munkonda MN, Awan Z,
CrossRef
Pubmed
Google scholar
|
[49] |
Jo H, Choe SS, Shin KC,
CrossRef
Pubmed
Google scholar
|
[50] |
Gonias SL, Campana WM. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system[J]. Am J Pathol, 2014, 184(1): 18–27.
CrossRef
Pubmed
Google scholar
|
[51] |
Lillis AP, Van Duyn LB, Murphy-Ullrich JE,
CrossRef
Pubmed
Google scholar
|
[52] |
May P. The low-density lipoprotein receptor-related protein 1 in inflammation[J]. Curr Opin Lipidol, 2013, 24(2): 134–137.
CrossRef
Pubmed
Google scholar
|
[53] |
Ma CI, Martin C, Ma Z,
CrossRef
Pubmed
Google scholar
|
[54] |
Muratoglu SC, Belgrave S, Lillis AP,
CrossRef
Pubmed
Google scholar
|
[55] |
Borrell-Pages M, Carolina Romero J, Badimon L. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes[J]. Immunol Cell Biol, 2015, 93(7): 653–661.
CrossRef
Pubmed
Google scholar
|
[56] |
Kysenius K, Muggalla P, Mätlik K,
CrossRef
Pubmed
Google scholar
|
[57] |
Joiner DM, Ke J, Zhong Z,
CrossRef
Pubmed
Google scholar
|
[58] |
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12): a007880.
CrossRef
Google scholar
|
[59] |
Bock HH, May P. Canonical and Non-canonical Reelin Signaling[J]. Front Cell Neurosci, 2016, 10: 166
CrossRef
Google scholar
|
[60] |
Ranaivoson FM, Daake Sv, Comoletti D. Structural Insights into Reelin Function: Present and Future[J]. Front Cell Neurosci, 2016, 10: 137.
CrossRef
Google scholar
|
[61] |
Saddar S, Carriere V, Lee WR,
CrossRef
Pubmed
Google scholar
|
[62] |
Shen WJ, Hu J, Hu Z,
CrossRef
Pubmed
Google scholar
|
[63] |
Martinez LO, Jacquet S, Esteve JP,
Pubmed
|
[64] |
Lichtenstein L, Serhan N, Annema W,
CrossRef
Pubmed
Google scholar
|
[65] |
Lichtenstein L, Serhan N, Espinosa-Delgado S,
CrossRef
Pubmed
Google scholar
|
[66] |
Goffinet M, Tardy C, Boubekeur N,
CrossRef
Google scholar
|
[67] |
Blom D, Yamin TT, Champy MF,
CrossRef
Pubmed
Google scholar
|
[68] |
Fabre AC, Vantourout P, Champagne E,
Pubmed
|
[69] |
Hu L, van der Hoogt CC, Espirito Santo SM,
CrossRef
Pubmed
Google scholar
|
[70] |
Pangburn SH, Newton RS, Chang CM,
Pubmed
|
[71] |
Cohen LH, Princen HM, Kwekkeboom J,
Pubmed
|
[72] |
Havekes LM, de Wit EC, Princen HM. Cellular free cholesterol in Hep G2 cells is only partially available for down-regulation of low-density-lipoprotein receptor activity[J]. Biochem J, 1987, 247(3): 739–746
Pubmed
|
[73] |
Havekes LM, Schouten D, de Wit EC,
Pubmed
|
[74] |
Havekes LM, Verboom H, de Wit E,
Pubmed
|
[75] |
Christoffersen M, Tybjærg-Hansen A. Novel genes in LDL metabolism--a comprehensive overview[J]. Curr Opin Lipidol, 2015, 26(3): 179–187.
CrossRef
Pubmed
Google scholar
|
[76] |
Kjolby M, Nielsen MS, Petersen CM. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease[J]. Curr Atheroscler Rep, 2015, 17(4): 496
CrossRef
Pubmed
Google scholar
|
[77] |
Sniderman AD, De Graaf J, Couture P,
CrossRef
Pubmed
Google scholar
|
[78] |
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion[J]. J Biomed Res, 2014, 28(3): 178–193.
CrossRef
Pubmed
Google scholar
|
[79] |
Sirtori CR, Pavanello C, Bertolini S. Microsomal transfer protein (MTP) inhibition-a novel approach to the treatment of homozygous hypercholesterolemia[J]. Ann Med, 2014, 46(7): 464–474.
CrossRef
Pubmed
Google scholar
|
[80] |
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2104–2112.
CrossRef
Pubmed
Google scholar
|
[81] |
Yao Z. Human apolipoprotein C-III- a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins[J]. Cardiovasc Hematol Disord Drug Targets, 2012, 12(2): 133–140
Pubmed
|
[82] |
Lange Y, Steck TL. Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol[J]. Prog Lipid Res, 2008, 47(5): 319–332.
CrossRef
Pubmed
Google scholar
|
[83] |
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector[J]. Chem Phys Lipids, 2016, 199: 74–93.
CrossRef
Google scholar
|
[84] |
Lange Y, Ye J, Steck TL. Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments[J]. PLoS One, 2014, 9(7): e98482
CrossRef
Google scholar
|
[85] |
Poirier S, Mayer G, Benjannet S,
Pubmed
|
[86] |
Sniderman AD, Qi Y, Ma CI,
CrossRef
Pubmed
Google scholar
|
[87] |
Zhang Y, Ma KL, Ruan XZ,
CrossRef
Google scholar
|
[88] |
Ai D, Chen C, Han S,
CrossRef
Pubmed
Google scholar
|
[89] |
Davis WJr, Boyd JT, Ile KE,
Pubmed
|
[90] |
Di Croce L, Bruscalupi G, Trentalance A. Independent behavior of rat liver LDL receptor and HMGCoA reductase under estrogen treatment[J]. Biochem Biophys Res Commun, 1996, 224(2): 345–350
Pubmed
|
[91] |
Lee YJ, Han DH, Pak YK,
CrossRef
Pubmed
Google scholar
|
[92] |
Liu J, Ma KL, Zhang Y,
CrossRef
Google scholar
|
[93] |
Lorbek G, Perše M, Horvat S,
CrossRef
Pubmed
Google scholar
|
[94] |
Osono Y, Woollett LA, Herz J,
Pubmed
|
[95] |
Truong TQ, Auger A, Denizeau F,
Pubmed
|
[96] |
Goedeke L, Rotllan N, Canfrán-Duque A,
CrossRef
Pubmed
Google scholar
|
[97] |
Ma KL, Ruan XZ, Powis SH,
Pubmed
|
[98] |
Ma KL, Ruan XZ, Powis SH,
CrossRef
Pubmed
Google scholar
|
[99] |
Zhao L, Chen Y, Tang R,
CrossRef
Pubmed
Google scholar
|
[100] |
Wang MD, Franklin V, Sundaram M,
Pubmed
|
[101] |
Dichek HL, Johnson SM, Akeefe H,
Pubmed
|
[102] |
Harders-Spengel K, Wood CB, Thompson GR,
Pubmed
|
[103] |
Karavia EA, Papachristou NI, Sakellaropoulos GC,
CrossRef
Pubmed
Google scholar
|
[104] |
Kartz GA, Holme RL, Nicholson K,
CrossRef
Pubmed
Google scholar
|
[105] |
Kim DH, Inagaki Y, Suzuki T,
Pubmed
|
[106] |
Rein-Fischboeck L, Krautbauer S, Eisinger K,
CrossRef
Pubmed
Google scholar
|
[107] |
Strong A, Ding Q, Edmondson AC,
CrossRef
Pubmed
Google scholar
|
[108] |
Ye ZJ, Go GW, Singh R,
CrossRef
Pubmed
Google scholar
|
[109] |
Scott CC, Vossio S, Vacca F,
CrossRef
Pubmed
Google scholar
|
[110] |
Wu GY, Wu CH, Rifici VA,
Pubmed
|
[111] |
Olofsson SO, Borén J. Apolipoprotein B secretory regulation by degradation[J]. Arterioscler Thromb Vasc Biol, 2012, 32(6): 1334–1338.
CrossRef
Pubmed
Google scholar
|
[112] |
Yao Z, Zhou H, Figeys D,
CrossRef
Pubmed
Google scholar
|
[113] |
Zhang Z, Cianflone K, Sniderman AD. Role of cholesterol ester mass in regulation of secretion of ApoB100 lipoprotein particles by hamster hepatocytes and effects of statins on that relationship[J]. Arterioscler Thromb Vasc Biol, 1999, 19(3): 743–752
Pubmed
|
[114] |
Sahoo D, Trischuk TC, Chan T,
Pubmed
|
[115] |
Twisk J, Gillian-Daniel DL, Tebon A,
Pubmed
|
[116] |
Temel RE, Hou L, Rudel LL,
Pubmed
|
[117] |
Alger HM, Brown JM, Sawyer JK,
CrossRef
Pubmed
Google scholar
|
[118] |
Melchior JT, Olson JD, Kelley KL,
CrossRef
Pubmed
Google scholar
|
[119] |
Ohshiro T, Ohtawa M, Nagamitsu T,
CrossRef
Pubmed
Google scholar
|
[120] |
Zhang J, Sawyer JK, Marshall SM,
CrossRef
Pubmed
Google scholar
|
[121] |
Pedrelli M, Davoodpour P, Degirolamo C,
CrossRef
Google scholar
|
[122] |
Marshall SM, Gromovsky AD, Kelley KL,
CrossRef
Google scholar
|
[123] |
Meyer JM, Graf GA, van der Westhuyzen DR. New developments in selective cholesteryl ester uptake[J]. Curr Opin Lipidol, 2013, 24(5): 386–392.
CrossRef
Pubmed
Google scholar
|
[124] |
Harder CJ, Meng A, Rippstein P,
Pubmed
|
[125] |
Ji Y, Wang N, Ramakrishnan R,
Pubmed
|
[126] |
Kozarsky KF, Donahee MH, Rigotti A,
Pubmed
|
[127] |
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile[J]. J Lipid Res, 2016, 57(9): 1712–1719.
CrossRef
Pubmed
Google scholar
|
[128] |
Rai AK, Spolaore B, Harris DA,
CrossRef
Pubmed
Google scholar
|
[129] |
Robins SJ, Fasulo JM. High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile[J]. J Clin Invest, 1997, 99(3): 380–384
Pubmed
|
/
〈 | 〉 |