The interaction between the Wnt/β-catenin signaling cascade and PKG activation in cancer

Kevin Lee , Gary A Piazza

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 189 -196.

PDF (248KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 189 -196. DOI: 10.7555/JBR.31.20160133
Review Article
Review Article

The interaction between the Wnt/β-catenin signaling cascade and PKG activation in cancer

Author information +
History +
PDF (248KB)

Abstract

The activation of the Wnt/β-catenin signaling cascade has been well studied and documented in colorectal cancer (CRC). The long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to reduce the incidence and risk of death from CRC in numerous epidemiological studies. The NSAID sulindac has also been reported to cause regression of precancerous adenomas in individuals with familial adenomatous polyposis who are at high risk of developing CRC. The mechanism responsible for cancer chemopreventive activity of NSAIDs is not well understood but may be unrelated to their cyclooxygenase inhibitory activity. Emerging evidence suggests that sulindac inhibits the growth of colon tumor cells by suppressing the activity of certain phosphodiesterase isozymes to activate cGMP-dependent protein kinase, PKG, through the elevation of the second messenger cyclic guanosine monophosphote, cGMP. PKG activation has been shown to inhibit the nuclear translocation of β-catenin, reduce β-catenin mRNA and protein levels, and suppress the transcriptional activity of β-catenin. This review describes the relationship between the Wnt/β-catenin signaling cascade and the activation of PKG through PDE inhibition and elevation of intracellular cGMP levels.

Keywords

Wnt / β-catenin / PKG / cGMP / PDE / NSAID / colon cancer / breast cancer

Cite this article

Download citation ▾
Kevin Lee, Gary A Piazza. The interaction between the Wnt/β-catenin signaling cascade and PKG activation in cancer. Journal of Biomedical Research, 2017, 31(3): 189-196 DOI:10.7555/JBR.31.20160133

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Disregulation of Wnt signaling in cancer

NSAIDs in cancer

Phosphodiesterase implications in cancer

Cyclic nucleotide degrading assays were first used to show that sulindac sulfone inhibits phosphodiesterase (PDE) activity at concentrations equivalent to those required to inhibit colon tumor cell growth[]. Cyclic nucleotides are generated by enzymes known as cyclases that use GTP or ATP to generate cyclic-GMP or cyclic-AMP, respectively. The cyclic nucleotides are then hydrolyzed into 5′GMP or 5′AMP through the action of phosphodiesterases in which inhibitors can cause a transient or sustained elevation of intracellular cGMP or cAMP levels, respectively. There are currently 11 known families of PDE’s that contain over 50 different isoforms or splice variants[]. Phosphodiesterases 5, 6, and 9 are cGMP specific, meaning that they selectively act to hydrolyze cGMP into 5′GMP[]. Phosphodiesterases 4, 7, and 8 are cAMP specific, meaning that they selectively hydrolyze cAMP into 5′AMP[]. PDEs 1, 2, 3, 10, and 11 are dual substrate PDEs, meaning that they can hydrolyze both cGMP and cAMP into 5′GMP and 5′AMP, respectively[]. Cyclic nucleotides can act as second messenger molecules in signaling pathways by activating protein kinases or other biochemical processes, including ion channels or regulating other PDE isozymes. In the case of protein kinases, cGMP can bind to and activate cyclic GMP-dependent protein kinase (PKG), while cyclic AMP can bind and activate cAMP-dependent protein kinase (PKA)[]. Cyclic nucleotides can also influence nucleotide-gated ion channels, or bind to certain cyclic nucleotide dependent PDEs resulting in their activation[]. There is also a level of crosstalk between cGMP and cAMP whereby the levels of cGMP can act to regulate the levels of cAMP through PDE activation or inhibition[]. It has also been shown that cAMP can activate PKG in coronary myocytes, thereby introducing another level of cyclic nucleotide cross-activation[].

Cyclic nucleotide elevation through PDE inhibition was shown to inhibit tumor cell growth in multiple cancer cell lines[,-]. In those same studies, it was shown that certain PDEs (PDE5, and PDE10) were expressed in high levels in tumor cells when compared to normal cells of the same tissue origin and that when these phosphodiesterases were inhibited through either pharmacological mechanisms or through genetic silencing, cyclic nucleotide levels were increased leading to activation of protein kinases, PKG and PKA. Sulindac was shown in these studies to inhibit tumor cells through a cyclooxygenase-independent mechanism of cGMP PDE inhibition which led to the elevation of cGMP and thus the activation of PKG. It has also been shown that inhibition of PDE9 induced an increase in the concentration of intracellular cGMP in estrogen receptor (ER) positive breast cancer cell lines (MCF-7) as well as in ER negative breast cancer cell lines (MDA-MB-468)[]. However, the authors did not determine any downstream targets other than caspase activation and subsequent apoptosis[]. It has also been shown that a PDE2 selective inhibitor induced cGMP elevation and attenuated UVB-induced carcinogenesis in mice[]. Patients with chronic lymphocytic leukemia (CLL) were shown to have an increase in PDE7B expression[]. Cells isolated from these patients underwent apoptosis when treated with a PDE7 inhibitor, albeit through an increase in cAMP[]. PDE10 was shown to be inhibited through the highly selective PDE10 inhibitor, Pf-2545920 (MP-10), which also led to the elevation of cGMP and the activation of PKG in colon cancer cell lines[-]. The increase in activity of PKG was shown to have an effect on β-catenin signaling and thus initiation of apoptosis[-,-,-].

Interaction of PKG and the Wnt signaling cascade

Further research into cGMP PDEs revealed that PDE10 mRNA and protein are overexpressed in colon tumor cell lines compared to normal colon epithelial cells[]. PDE10 is also overexpressed in human colon tumors and in tumors from APCmin/+ mice relative to normal colon mucosa. PDE10 inhibitors suppressed the proliferation and induced apoptosis of colon tumor cells by a mechanism involving G1 cell cycle arrest. Knockdown of PDE10 yielded similar effects as well as causing a decrease in cyclin D1 and survivin. Other studies implicated β-catenin in the PDE10 signaling pathway by showing that knockdown of PDE10 caused a reduction in β-catenin transcriptional activity using a Tcf/Lef reporter assay[]. The highly selective and potent PDE10 inhibitor, Pf-2545920 (MP-10), was also shown to induce apoptosis through an increase in intracellular cGMP, the activation of PKG, and the reduction of β-catenin translocation to the nucleus[]. As previously mentioned, PDE10 is a dual-specific phosphodiesterase capable of hydrolyzing both cGMP and cAMP. Therefore, further studies are necessary to determine if the effects of PDE10 inhibition involve an increase in cGMP or cAMP or an increase in both. Through the use of pharmacological inhibitors of PKG and PKA, recent studies suggest that the anticancer activity resulting from PDE10 inhibition is exclusively through the activity of cGMP/PKG signaling in which the effects on cAMP/PKA signaling may be ancillary. As mentioned previously, the inhibition of the cGMP specific PDE5 similarly led to a reduction of β-catenin, survivin, cyclin D1 levels, as well as a reduction in Tcf/Lef transcriptional activity[,]. This supports the possibility that the effects of PDE10 inhibition exclusively involve cGMP/PKG signaling. In addition, dual inhibition of PDE5 and PDE10 results in additive or synergistic effects on cGMP/PKG signaling on β-catenin mediated transcriptional activity[].

Discussion

The Wnt/β-catenin signaling cascade has been implicated in many biologic processes including, but not limited to cell growth, differentiation, development, as well as even cancer. Indeed, the APC protein is one of the best known examples of a tumor suppressor that regulates β-catenin signaling. NSAIDs are known to be effective for the treatment of patients with FAP but are not FDA approved for such a use due to potentially fatal side effects relating to their cyclooxygenase inhibitory activity and suppression of physiologically important prostaglandins. The reduction of incidence of adenomas inAPCmin/+ mice treated with sulindac suggested that sulindac played a role in modulating Wnt/β-catenin signaling. It was later discovered that the inhibition of PDE5 was responsible for a decrease in Wnt/β-catenin signaling through the activation of PKG. In addition, PDE10 inhibition also resulted in an activation of PKG and a reduction in β-catenin mediated signaling. More research would need to be taken in order to ensure results seen in regard to PDE10 inhibition were due to PKG activation. In summary, the activation of PKG has been shown to modulate the Wnt/β-catenin signaling cascade through the reduction of β-catenin protein levels, blocking the nuclear translocation of β-catenin, decreasing the level of β-catenin transcriptional activity through the Tcf/Lef promoter, decreasing the transcription of β-catenin itself, or through interactions with other transcription factors. A depiction of how PDEs interact with the Wnt/β-catenin signaling cascade is shown inFig. 2.

References

[1]

Siegel  RDesantis  CJemal  A . Colorectal cancer statistics, 2014[J]. CA Cancer J Clin201464(2): 104–117

[2]

Vogelstein  B Papadopoulos N Velculescu  VE Cancer genome  landscapes[J].  Science2013339(6127): 1546–1558

[3]

Binefa  GRodríguez-Moranta  FTeule  A Colorectal cancer: from prevention to personalized medicine[J]. World J Gastroenterol201420(22): 6786–6808

[4]

Willert  KNusse  R. Wnt proteins[J]. Cold Spring Harb Perspect Biol20124(9): a007864

[5]

Clevers  HNusse  R. Wnt/β-catenin signaling and disease[J]. Cell2012149(6): 1192–1205

[6]

Yost  CTorres  MMiller  JR The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3[J]. Genes Dev199610(12): 1443–1454

[7]

Winston  JTStrack  PBeer-Romero  PThe SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and β-catenin and stimulates IkappaBalpha ubiquitination in vitro[J]. Genes Dev199913(3): 270–283

[8]

González-Sancho  JM Greer  YE Abrahams CL Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling[J]. J Biol Chem2013288(13): 9428–9437

[9]

He  TCSparks  ABRago  C Identification of c-MYC as a target of the APC pathway[J]. Science1998281(5382): 1509–1512

[10]

Shtutman  MZhurinsky  JSimcha  I The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway[J]. Proc Natl Acad Sci U S A199996(10): 5522–5527

[11]

Li  NLee  KXi  Y Phosphodiesterase 10A: a novel target for selective inhibition of colon tumor cell growth and β-catenin-dependent TCF transcriptional activity[J]. Oncogene201534(12): 1499–1509

[12]

Lee  Kb-catenin nuclear translocation in colorectal cancer cells is suppressed by PDE10A inhibition, cGMP elevation, and activation of PKG[J]. Oncotarget2015

[13]

Koh  TJBulitta  CJFleming  JV Gastrin is a target of the β-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis[J]. J Clin Invest2000106(4): 533–539

[14]

Kolligs  FTNieman  MTWiner  I ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with β-catenin defects and promotes neoplastic transformation[J]. Cancer Cell20021(2): 145–155

[15]

Kinzler  KWVogelstein  B. Lessons from hereditary colorectal cancer[J]. Cell199687(2): 159–170

[16]

Munemitsu  SAlbert  ISouza  B Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein[J]. Proc Natl Acad Sci U S A199592(7): 3046–3050

[17]

Shoemaker  AR Gould KA Luongo  C Studies of neoplasia in the Min mouse[J]. Biochim Biophys Acta19971332(2): F25–F48

[18]

Moser  ARShoemaker  ARConnelly  CS Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation[J]. Dev Dyn1995203(4): 422–433

[19]

Cooper  HSChang  WCCoudry  R Generation of a unique strain of multiple intestinal neoplasia (Apc(+/Min-FCCC)) mice with significantly increased numbers of colorectal adenomas[J]. Mol Carcinog200544(1): 31–41

[20]

Woo  DKKim  HSLee  HS Altered expression and mutation of β-catenin gene in gastric carcinomas and cell lines[J]. Int J Cancer200195(2): 108–113

[21]

Abraham  SCNobukawa  BGiardiello  FM Sporadic fundic gland polyps: common gastric polyps arising through activating mutations in the β-catenin gene[J]. Am J Pathol2001158(3): 1005–1010

[22]

Giles  RHvan Es  JHClevers  H . Caught up in a Wnt storm: Wnt signaling in cancer[J]. Biochim Biophys Acta20031653(1): 1–24

[23]

Björklund  P Lindberg D Akerström  G Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients[J]. Mol Cancer20087: 53

[24]

McCubrey  JASteelman  LSBertrand  FE GSK-3 as potential target for therapeutic intervention in cancer[J]. Oncotarget20145(10): 2881–2911

[25]

Chan  TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention[J]. Lancet Oncol20023(3): 166–174

[26]

Giardiello  FM Hamilton SR Krush  AJ Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis[J]. N Engl J Med1993328(18): 1313–1316

[27]

Beazer-Barclay  Y Levy  DB Moser AR Sulindac suppresses tumorigenesis in the Min mouse[J]. Carcinogenesis199617(8): 1757–1760

[28]

Piazza  GAAlberts  DSHixson  LJ Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels[J]. Cancer Res199757(14): 2909–2915

[29]

Strong  HAWarner  NJRenwick  AG Sulindac metabolism: the importance of an intact colon[J]. Clin Pharmacol Ther198538(4): 387–393

[30]

Arber  NKuwada  SLeshno  M , and the Exisulind Study Group. Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study[J]. Gut200655(3): 367–373

[31]

Thompson  WJPiazza  GALi  H Exisulind induction of apoptosis involves guanosine 3′5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated  β-catenin[J].  Cancer Res200060(13): 3338–3342

[32]

Bender  ATBeavo  JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use[J]. Pharmacol Rev200658(3): 488–520

[33]

Scott  JD. Cyclic nucleotide-dependent protein kinases[J]. Pharmacol Ther199150(1): 123–145

[34]

Zaccolo  MMovsesian  MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology[J]. Circ Res2007100(11): 1569–1578

[35]

White  REKryman  JPEl-Mowafy  AM cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells[J]. Circ Res200086(8): 897–905

[36]

Tinsley  HNGary  BDKeeton  AB Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G[J]. Mol Cancer Ther20098(12): 3331–3340

[37]

TinsleyHNGary BDKeetonAB Inhibition of PDE5 by Sulindac Sulfide selectively induces apoptosis and attenuates oncogenic Wnt/-Catenin–mediated transcription in human breast tumor cells[J]. Cancer Prev Res  (Phila.  Pa.)2011, 4(8): 1275–1284.

[38]

WhittJDLi NTinsleyHN  A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity[J]. Cancer Prev Res (Phila)20125(6): 822–833.

[39]

Saravani  RKarami-Tehrani  FHashemi  M Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468[J]. Cell Prolif201245(3): 199–206

[40]

Bernard  JJLou  YRPeng  QY PDE2 is a novel target for attenuating tumor formation in a mouse model of UVB-induced skin carcinogenesis[J]. PLoS One20149(10): e109862

[41]

Zhang  LMurray  FZahno  A Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A2008105(49): 19532–19537

[42]

Kwon  IKWang  RThangaraju  M PKG inhibits TCF signaling in colon cancer cells by blocking β-catenin expression and activating FOXO4[J]. Oncogene201029(23): 3423–3434

[43]

Babykutty  SSuboj  PSrinivas  P Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways[J]. Clin Exp Metastasis201229(5): 471–492

[44]

Deguchi  AThompson  WJWeinstein  IB . Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells[J]. Cancer Res200464(11): 3966–3973

[45]

Wolfertstetter  S Huettner  JP Schlossmann J . cGMP-Dependent Protein Kinase Inhibitors in Health and Disease[J]. Pharmaceuticals (Basel)20136(2): 269–286

[46]

Hofmann  F. The biology of cyclic GMP-dependent protein kinases[J]. J Biol Chem2005280(1): 1–4

[47]

Rahbi  HNarayan  HJones  DJL The uroguanylin system and human disease[J]. Clin Sci (Lond)2012123(12): 659–668

[48]

Soh  JWKazi  JULi  H Celecoxib-induced growth inhibition in SW480 colon cancer cells is associated with activation of protein kinase G[J]. Mol Carcinog200847(7): 519–525

[49]

Deguchi  ASoh  JWLi  H Vasodilator-stimulated phosphoprotein (VASP) phosphorylation provides a biomarker for the action of exisulind and related agents that activate protein kinase G[J]. Mol Cancer Ther20021(10): 803–809

[50]

Li  NXi  YTinsley  HN Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling[J]. Mol Cancer Ther201312(9): 1848–1859

[51]

Li  NChen  XZhu  B Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10[J]. Oncotarget20156(29): 27403–27415

[52]

Lu  WTinsley  HNKeeton  A Suppression of Wnt/β-catenin signaling inhibits prostate cancer cell proliferation[J]. Eur J Pharmacol2009602(1): 8–14

[53]

Lepourcelet  M Chen YN France  DS Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex[J]. Cancer Cell20045(1): 91–102

[54]

Guan  HTan  PXie  L FOXO1 inhibits osteosarcoma oncogenesis via Wnt/β-catenin pathway suppression[J]. Oncogenesis20154(9): e166

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved.

AI Summary AI Mindmap
PDF (248KB)

795

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/