Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression
Andrew Sulaiman, Zemin Yao, Lisheng Wang
Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymal-like cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal (E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.
Epithelial-mesenchymal transition (EMT) / mesenchymal-epithelial transition (MET) / hybrid EMT/MET / cancer metastasis
[1] |
Gupta GP, Massagué J. Cancer metastasis: building a framework[J]. Cell, 2006, 127(4): 679–695
Pubmed
|
[2] |
Tan TZ, Miow QH, Miki Y,
Pubmed
|
[3] |
Garg M. Epithelial-mesenchymal transition- activating transcription factors- multifunctional regulators in cancer[J]. World J Stem Cells, 2013, 5(4): 188–195
Pubmed
|
[4] |
Steinestel K, Eder S, Schrader AJ,
Pubmed
|
[5] |
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms[J]. Nat Rev Cancer, 2003, 3(5): 362–374
Pubmed
|
[6] |
Cristofanilli M, Hayes DF, Budd GT,
Pubmed
|
[7] |
Yang MH, Imrali A, Heeschen C. Circulating cancer stem cells: the importance to select[J]. Chin J Cancer Res, 2015, 27(5): 437–449
Pubmed
|
[8] |
Hay ED. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo[J]. Epithelial-Mesenchymal Interactions, 1968, 2: 31–35.
|
[9] |
Lee JM, Dedhar S, Kalluri R,
Pubmed
|
[10] |
Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation[J]. Mol Cancer Res, 2011, 9(12): 1608–1620
Pubmed
|
[11] |
Gunasinghe NP, Wells A, Thompson EW,
Pubmed
|
[12] |
Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer[J]. J Mammary Gland Biol Neoplasia, 2010, 15(2): 253–260
Pubmed
|
[13] |
Vazquez-Martin A, Oliveras-Ferraros C, Cufí S,
Pubmed
|
[14] |
Davis FM, Stewart TA, Thompson EW,
Pubmed
|
[15] |
Huang T, Chen Z, Fang L. Curcumin inhibits LPS-induced EMT through downregulation of NF-kB-Snail signaling in breast cancer cells[J]. Oncol Rep, 2013, 29(1): 117–124
Pubmed
|
[16] |
Sokol JP, Neil JR, Schiemann BJ,
Pubmed
|
[17] |
Tojo M, Hamashima Y, Hanyu A,
Pubmed
|
[18] |
Iwanami T, Uramoto H, Nakagawa M,
Pubmed
|
[19] |
Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia[J]. Cancer Res, 2005, 65(14): 5996–6000., discussion 6000–6001.
Pubmed
|
[20] |
Chui MH. Insights into cancer metastasis from a clinicopathologic perspective: Epithelial-Mesenchymal Transition is not a necessary step[J]. Int J Cancer, 2013, 132(7): 1487–1495
Pubmed
|
[21] |
Fischer KR, Durrans A, Lee S,
Pubmed
|
[22] |
Zheng X, Carstens JL, Kim J,
Pubmed
|
[23] |
Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer[J]. Oncogene, 2008, 27(55): 6958–6969
Pubmed
|
[24] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178–196
Pubmed
|
[25] |
Ma M, He M, Jiang Q,
Pubmed
|
[26] |
Kong L, Guo S, Liu C,
Pubmed
|
[27] |
Ma F, Chen D, Chen F,
Pubmed
|
[28] |
Gonçalves NdoN, Colombo J, Lopes JR,
Pubmed
|
[29] |
Das T, Safferling K, Rausch S,
Pubmed
|
[30] |
Liu S, Cong Y, Wang D,
Pubmed
|
[31] |
Yauch RL, Januario T, Eberhard DA,
Pubmed
|
[32] |
Frixen UH, Behrens J, Sachs M,
Pubmed
|
[33] |
Vleminckx K, Vakaet LJr, Mareel M,
Pubmed
|
[34] |
Orsulic S, Huber O, Aberle H,
Pubmed
|
[35] |
Li Q, Mattingly RR. Restoration of E-cadherin cell-cell junctions requires both expression of E-cadherin and suppression of ERK MAP kinase activation in Ras-transformed breast epithelial cells[J]. Neoplasia, 2008, 10(12): 1444–1458
Pubmed
|
[36] |
Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis[J]. Oncogene, 2010, 29(7): 937–948
Pubmed
|
[37] |
Díaz VM, Viñas-Castells R, García de Herreros A. Regulation of the protein stability of EMT transcription factors[J]. Cell Adh Migr, 2014, 8(4): 418–428
Pubmed
|
[38] |
Minafra L, Bravatà V, Forte GI,
Pubmed
|
[39] |
Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human cancer.[Review][J]. Mol Clin Oncol, 2013, 1(1): 3–11
Pubmed
|
[40] |
Xu Q, Deng F, Qin Y,
Pubmed
|
[41] |
Cano A, Pérez-Moreno MA, Rodrigo I,
Pubmed
|
[42] |
Bolós V, Peinado H, Pérez-Moreno MA,
Pubmed
|
[43] |
Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3[J]. Mol Biol Cell, 2008, 19(11): 4875–4887
Pubmed
|
[44] |
Nishita M, Hashimoto MK, Ogata S,
Pubmed
|
[45] |
Gregory PA, Bracken CP, Smith E,
Pubmed
|
[46] |
Postigo AA, Depp JL, Taylor JJ,
Pubmed
|
[47] |
Vesuna F, van Diest P, Chen JH,
Pubmed
|
[48] |
Montserrat N, Gallardo A, Escuin D,
Pubmed
|
[49] |
Yang MH, Wu MZ, Chiou SH,
Pubmed
|
[50] |
Song X, Liu X, Chi W,
Pubmed
|
[51] |
Leibovich-Rivkin T, Liubomirski Y, Bernstein B,
Pubmed
|
[52] |
Pei D, Weiss SJ. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity[J]. J Biol Chem, 1996, 271(15): 9135–9140
Pubmed
|
[53] |
Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells[J]. Proc Natl Acad Sci U S A, 1994, 91(10): 4293–4297
Pubmed
|
[54] |
Trivanović D, Jauković A, Krstić J,
Pubmed
|
[55] |
Zhang Q, Ding J, Liu J,
Pubmed
|
[56] |
Jia D, Tan Y, Liu H,
Pubmed
|
[57] |
Bastid J. EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations[J]. Cancer Metastasis Rev, 2012, 31(1-2): 277–283
Pubmed
|
[58] |
Terao M, Ishikawa A, Nakahara S,
Pubmed
|
[59] |
Yoshida T, Ozawa Y, Kimura T,
Pubmed
|
[60] |
Ledford H. Cancer theory faces doubts[J]. Nature, 2011, 472(7343): 273–273
Pubmed
|
[61] |
Rubin MA, Putzi M, Mucci N,
Pubmed
|
[62] |
Scotton CJ, Wilson JL, Milliken D,
Pubmed
|
[63] |
Park CS, Kim TK, Kim HG,
Pubmed
|
[64] |
Yang Y, Jiang Y, Wan Y,
Pubmed
|
[65] |
Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res, 2006, 66(17): 8319–8326
Pubmed
|
[66] |
Jolly MK, Boareto M, Huang B,
Pubmed
|
[67] |
Rhim AD, Mirek ET, Aiello NM,
Pubmed
|
[68] |
Grosse-Wilde A, Fouquier d’Hérouël A, McIntosh E,
Pubmed
|
[69] |
Andriani F, Bertolini G, Facchinetti F,
Pubmed
|
[70] |
Jeevan DS, Cooper JB, Braun A,
Pubmed
|
[71] |
Sampson VB, David JM, Puig I,
Pubmed
|
[72] |
Ruscetti M, Quach B, Dadashian EL,
Pubmed
|
[73] |
Jansson S, Bendahl PO, Larsson AM,
Pubmed
|
[74] |
Danila DC, Heller G, Gignac GA,
Pubmed
|
[75] |
Yoon SO, Kim YT, Jung KC,
Pubmed
|
[76] |
Zhang L, Ridgway LD, Wetzel MD,
|
[77] |
Fu A, Ma S, Wei N,
Pubmed
|
[78] |
Aceto N, Bardia A, Miyamoto DT,
Pubmed
|
[79] |
Jia D, Jolly MK, Boareto M,
Pubmed
|
[80] |
Jolly MK, Tripathi SC, Jia D,
Pubmed
|
[81] |
Lu M, Jolly MK, Levine H,
Pubmed
|
[82] |
Jolly MK, Jia D, Boareto M,
Pubmed
|
[83] |
Jolly MK, Huang B, Lu M,
Pubmed
|
[84] |
Bidarra SJ, Oliveira P, Rocha S,
Pubmed
|
[85] |
Xu Z, Li E, Guo Z,
Pubmed
|
[86] |
Kim TH, Yoon HJ, Nagrath S. Identification and characterization of EMT/MET signatures in circulating tumor cells isolated from patients with metastatic breast cancer using graphene oxide nano-chip[J]. Cancer Res, 2016, 76(14Supplement): 1685–1685.
|
[87] |
Wang Y. Mutation and gene expression analysis of circulating tumor cells (CTCs) enriched and retrieved by a sensitive microfluidic device[J]. Cancer Res, 2016, 76(14Supplement): 1688–1688.
|
[88] |
Aref AR, Huang RYJ, Yu W,
Pubmed
|
[89] |
Plutoni C, Bazellieres E, Le Borgne-Rochet M,
Pubmed
|
[90] |
Plutoni C, Bazellières E, Gauthier-Rouvière C.P-cadherin-mediated Rho GTPase regulation during collective cell migration[J]. Small GTPases, 2016, (just-accepted):00–00.
|
[91] |
Vieira AF, Ricardo S, Ablett MP,
Pubmed
|
[92] |
Li B, Shi H, Wang F,
Pubmed
|
[93] |
Wang P, Lin SL, Zhang LH,
Pubmed
|
[94] |
Sakamoto K, Imai K, Higashi T,
Pubmed
|
[95] |
Ko SY, Naora H. HOXA9 promotes homotypic and heterotypic cell interactions that facilitate ovarian cancer dissemination via its induction of P-cadherin[J]. Mol Cancer, 2014, 13(1): 170
Pubmed
|
[96] |
Mar J, Robinson A, Neville R,
Pubmed
|
[97] |
Ribeiro AS, Paredes J. P-cadherin linking breast cancer stem cells and invasion: a promising marker to identify an “intermediate/metastable” EMT state[J]. Front Oncol, 2015, 4: 371
Pubmed
|
[98] |
Mi K, Xing Z. CD44(+)/CD24(-) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold[J]. Int J Nanomedicine, 2015, 10: 3043–3053
Pubmed
|
[99] |
Paholak HJ, Stevers NO, Chen H,
Pubmed
|
[100] |
Zhang M, Rosen JM. Developmental Insights into Breast Cancer Intratumoral Heterogeneity[J]. Trends Cancer, 2015, 1(4): 242–251
Pubmed
|
[101] |
Ginestier C, Hur MH, Charafe-Jauffret E,
Pubmed
|
[102] |
Croker AK, Goodale D, Chu J,
Pubmed
|
[103] |
Qiu Y, Pu T, Guo P,
Pubmed
|
[104] |
Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells[J]. Breast Cancer Res Treat, 2012, 133(1): 75–87
Pubmed
|
/
〈 | 〉 |