Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain

Eun-sung Park, Jung-mo Ahn, Sang-min Jeon, Hee-jung Cho, Ki-myung Chung, Je-yoel Cho, Dong-ho Youn

PDF(322 KB)
PDF(322 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (6) : 494-502. DOI: 10.7555/JBR.31.20160122
Original Article
Original Article

Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain

Author information +
History +

Abstract

Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th–6th lumbar spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry (MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics usingProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain, and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.

Keywords

proteomics / spinal dorsal horn / neuropathic pain / spared nerve injury / mouse

Cite this article

Download citation ▾
Eun-sung Park, Jung-mo Ahn, Sang-min Jeon, Hee-jung Cho, Ki-myung Chung, Je-yoel Cho, Dong-ho Youn. Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain. Journal of Biomedical Research, 2017, 31(6): 494‒502 https://doi.org/10.7555/JBR.31.20160122

References

[1]
Zimmermann M. Pathobiology of neuropathic pain[J]. Eur J Pharmacol, 2001, 429(1-3): 23–37
Pubmed
[2]
Scholz J, Woolf  CJ. Can we conquer pain[J]? Nat Neurosci, 2002, 5(Suppl): 1062–1067
Pubmed
[3]
Mallick P, Kuster  B. Proteomics: a pragmatic perspective[J]. Nat Biotechnol, 2010, 28(7): 695–709
Pubmed
[4]
Komori N, Takemori  N, Kim HK , Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury[J]. Physiol Genomics, 2007, 29(2): 215–230
Pubmed
[5]
Zou W, Zhan  X, Li M , Identification of differentially expressed proteins in the spinal cord of neuropathic pain models with PKCgamma silence by proteomic analysis[J]. Brain Res, 2012, 1440: 34–46
Pubmed
[6]
Sui P, Watanabe  H, Ossipov MH , Proteomics of neuropathic pain: proteins and signaling pathways affected in a rat model[J]. J Proteome Res, 2014, 13(9): 3957–3965
Pubmed
[7]
Kunz S, Tegeder  I, Coste O , Comparative proteomic analysis of the rat spinal cord in inflammatory and neuropathic pain models[J]. Neurosci Lett, 2005, 381(3): 289–293
Pubmed
[8]
Lee SC, Yoon  TG, Yoo YI , Analysis of spinal cord proteome in the rats with mechanical allodynia after the spinal nerve injury[J]. Biotechnol Lett, 2003, 25(24): 2071–2078
Pubmed
[9]
A.F.Bourquin, M.Suveges, M.Pertin , , Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse[J]. Pain 122 (2006) 14e11–14.
[10]
Keller A, Nesvizhskii  AI, Kolker E , Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search[J]. Anal Chem, 2002, 74(20): 5383–5392
Pubmed
[11]
Nesvizhskii AI, Keller  A, Kolker E , A statistical model for identifying proteins by tandem mass spectrometry[J]. Anal Chem, 2003, 75(17): 4646–4658
Pubmed
[12]
Gillespie CS, Sherman  DL, Blair GE , Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment[J]. Neuron, 1994, 12(3): 497–508
Pubmed
[13]
Scherer SS, Xu  YT, Bannerman PG , Periaxin expression in myelinating Schwann cells: modulation by axon-glial interactions and polarized localization during development[J]. Development, 1995, 121(12): 4265–4273
Pubmed
[14]
Gillespie CS, Sherman  DL, Fleetwood-Walker SM , Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice[J]. Neuron, 2000, 26(2): 523–531
Pubmed
[15]
Wallace VC, Cottrell  DF, Brophy PJ , Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids[J]. J Neurosci, 2003, 23(8): 3221–3233
Pubmed
[16]
Einheber S, Zanazzi  G, Ching W , The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination[J]. J Cell Biol, 1997, 139(6): 1495–1506
Pubmed
[17]
Peles E, Salzer  JL. Molecular domains of myelinated axons[J]. Curr Opin Neurobiol, 2000, 10(5): 558–565
Pubmed
[18]
Wolswijk G, Balesar  R. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis[J]. Brain, 2003, 126(Pt 7): 1638–1649
Pubmed
[19]
Henry MA, Freking  AR, Johnson LR , Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury[J]. BMC Neurosci, 2007, 8: 56
Pubmed
[20]
Avila MA, Corrales  FJ, Ruiz F , Specific interaction of methionine adenosyltransferase with free radicals[J]. Biofactors, 1998, 8(1-2): 27–32
Pubmed
[21]
Guedes RP, Araújo  AS, Janner D , Increase in reactive oxygen species and activation of Akt signaling pathway in neuropathic pain[J]. Cell Mol Neurobiol, 2008, 28(8): 1049–1056
Pubmed
[22]
Park ES, Gao  X, Chung JM , Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons[J]. Neurosci Lett, 2006, 391(3): 108–111
Pubmed
[23]
Phelan SA, Wang  X, Wallbrandt P , Overexpression of Prdx6 reduces H2O2 but does not prevent diet-induced atherosclerosis in the aortic root[J]. Free Radic Biol Med, 2003, 35(9): 1110–1120
Pubmed
[24]
Gao YJ, Ji  RR. Activation of JNK pathway in persistent pain[J]. Neurosci Lett, 2008, 437(3): 180–183
Pubmed
[25]
Ji RR, Gereau  RW4th, Malcangio M , MAP kinase and pain[J]. Brain Res Rev, 2009, 60(1): 135–148
Pubmed
[26]
Jones LL, Margolis  RU, Tuszynski MH . The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury[J]. Exp Neurol, 2003, 182(2): 399–411
Pubmed
[27]
Andrews EM, Richards  RJ, Yin FQ , Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury[J]. Exp Neurol, 2012, 235(1): 174–187
Pubmed
[28]
Deller T, Haas  CA, Frotscher M . Sprouting in the hippocampus after entorhinal cortex lesion is layer- specific but not translaminar: which molecules may be involved?[J]. Restor Neurol Neurosci, 2001, 19(3-4): 159–167
Pubmed
[29]
Woolf CJ, Shortland  P, Coggeshall RE . Peripheral nerve injury triggers central sprouting of myelinated afferents[J]. Nature, 1992, 355(6355): 75–78
Pubmed
[30]
Oertle T, Schwab  ME. Nogo and its paRTNers[J]. Trends Cell Biol, 2003, 13(4): 187–194
Pubmed
[31]
Bandtlow CE, Schwab  ME. NI-35/250/nogo-a: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS[J]. Glia, 2000, 29(2): 175–181
Pubmed
[32]
Hunt D, Coffin  RS, Prinjha RK , Nogo-A expression in the intact and injured nervous system[J]. Mol Cell Neurosci, 2003, 24(4): 1083–1102
Pubmed
[33]
Schwab ME. Increasing plasticity and functional recovery of the lesioned  spinal  cord[J].  Prog  Brain  Res, 2002, 137: 351–359
Pubmed
[34]
Bowen MA, Patel  DD, Li X , Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand[J]. J Exp Med, 1995, 181(6): 2213–2220
Pubmed
[35]
Cayrol R, Wosik  K, Berard JL , Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system[J]. Nat Immunol, 2008, 9(2): 137–145
Pubmed
[36]
Hu P, Bembrick  AL, Keay KA , Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve[J]. Brain Behav Immun, 2007, 21(5): 599–616
Pubmed
[37]
Salinas AE, Wong  MG. Glutathione S-transferases—a review[J]. Curr Med Chem, 1999, 6(4): 279–309
Pubmed
[38]
Horst A, Kolberg  C, Moraes MS , Effect of N-acetylcysteine on the spinal-cord glutathione system and nitric-oxide metabolites in rats with neuropathic pain[J]. Neurosci Lett, 2014, 569: 163–168
Pubmed
[39]
Shi TJ, Liu  SX, Hammarberg H , Phospholipase Cβ3 in mouse and human dorsal root ganglia and spinal cord is a possible target for treatment of neuropathic pain[J]. Proc Natl Acad Sci U S A, 2008, 105(50): 20004–20008
Pubmed

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2015R1D1A1A01059432).

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research.
PDF(322 KB)

Accesses

Citations

Detail

Sections
Recommended

/