Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs

Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee

PDF(373 KB)
PDF(373 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (5) : 453-461. DOI: 10.7555/JBR.31.20160115
Original Article
Original Article

Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs

Author information +
History +

Abstract

Difructose dianhydride IV (DFA-IV) is produced from levan, which is a natural polysaccharide that belongs to the fructan family, through the activity of levan fructotransferase (LF) derived from microorganisms. Recently, DFA-IV has been expected to have diverse applications in the food and medical industry. Here, we examined the potential application of DFA-IV forin vitro fertilization (IVF) in pigs. In the assessment of acrosomal integrity during incubation, intact acrosomal or viable spermatozoa were highly sustained in 0.1% or 0.25% DFA-IV (69.8%-70.8%,P<0.05). Reactive oxygen species (ROS) levels during sperm incubation decreased following the addition of DFA-IV, and 0.1%-0.5% DFA-IV in particular significantly decreased ROS production relative to that seen with no addition or 0.75% DFA-IV. Total fertilization (mono+ polyspermic oocyte) rate was significantly higher in the addition of 0.1% DFA-IV (94.2%) than with other concentrations (71.8%-86.7%,P<0.05). When using reduced IVF times and lower sperm numbers, we found that addition of 0.1%–0.5% DFA-IV significantly increased the fertilization rate (P<0.05). Fertilized oocytes treated with 0.1% DFA-IV exhibited higher embryonic development and blastocyst formation than those treated with other concentrations (P<0.05). Consequently, the addition of DFA-IV during IVF improved fertilization and embryonic development, suggesting the possible use of novel sugars for enhancement of assisted reproductive technology (ART) in mammals.

Keywords

difructose dianhydride-IV / spermatozoa / in vitro fertilization / embryo / pig

Cite this article

Download citation ▾
Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs. Journal of Biomedical Research, 2017, 31(5): 453‒461 https://doi.org/10.7555/JBR.31.20160115

References

[1]
Ponglowhapan S, Essén-Gustavsson  B, Linde Forsberg C. Influence of glucose and fructose in the extender during long-term storage of chilled canine semen[J]. Theriogenology, 2004, 62(8): 1498–1517
Pubmed
[2]
Watson P. The preservation of semen in mammals[J]. Oxf Rev Reprod Biol, 1979, 1: 283–350.
[3]
Cerning J. Exocellular polysaccharides produced by lactic acid bacteria[J]. FEMS Microbiol Rev, 1990, 7(1-2): 113–130
Pubmed
[4]
Dahech I, Belghith  KS, Hamden K , Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats[J]. Int J Biol Macromol, 2011, 49(4): 742–746
Pubmed
[5]
Dahech I, Belghith  KS, Hamden K , Oral administration of levan polysaccharide reduces the alloxan-induced oxidative stress in rats[J]. Int J Biol Macromol, 2011, 49(5): 942–947
Pubmed
[6]
Kang SA, Jang  KH, Seo JW , Levan: applications and perspectives. Microbial production of biopolymers and polymer precursors[J]. Caister Academic Press, Norwich 2009: 145–161.
[7]
Abdel-Fattah AM, Gamal-Eldeen  AM, Helmy WA , Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza[J]. Carbohydr Polym, 2012, 89(2): 314–322
Pubmed
[8]
Esawy MA, Amer  H, Gamal-Eldeen AM , Scaling up, characterization of levan and its inhibitory role in carcinogenesis initiation stage’[J]. Carbohydr Polym, 2013, 95(1): 578–587
Pubmed
[9]
Lima RC, de França  FP, Lopes CE , and the Calazans GMT. Molecular weight and antitumour activity of Zymomonas mobilis levans[J]. Int J Biol Macromol, 2000, 27(4): 245– 247
Pubmed
[10]
Saito K, Tomita  F. Difructose anhydrides: their mass-production and physiological functions[J]. Biosci Biotechnol Biochem, 2000, 64(7): 1321–1327
Pubmed
[11]
Kim CH, Jang  EK, Kim SH , Molecular cloning of levan fructotransferase gene from Arthrobacter ureafaciens K2032 and its expression in Escherichia coli for the production of difructose dianhydride IV[J]. Lett Appl Microbiol, 2005, 40(3): 228–234
Pubmed
[12]
Jang KH, Ryu  EJ, Park BS , Levan fructotransferase from Arthrobacter oxydans J17-21 catalyzes the formation of the di-D-fructose dianhydride IV from levan[J]. J Agric Food Chem, 2003, 51(9): 2632–2636
Pubmed
[13]
Pursel VG, Johnson  LA. Frozen boar spermatozoa: methods of thawing pellets[J]. J Anim Sci, 1976, 42(4): 927–931
Pubmed
[14]
Abeydeera LR, Wang  WH, Prather RS , Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro[J]. Biol Reprod, 1998, 58(5): 1316–1320
Pubmed
[15]
Yoshioka K, Suzuki  C, Tanaka A , Birth of piglets derived from porcine zygotes cultured in a chemically defined medium[J]. Biol Reprod, 2002, 66(1): 112–119
Pubmed
[16]
BaroneJR, Medynets M. Thermally processed levan polymers[J]. Carbohyd Polym, 2007, 69: 554–561.
[17]
JathoreNR, Bule MV, TilayAV ,  AnnapureUS. Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production[J]. Food Sci Biotechnol, 2012, 21: 1045–1053.
[18]
ZhaoG, Kan J, LiZ ,  ChenZ. Structural features and immunological activity of a polysaccharide from Dioscorea opposita thunb roots[J]. Carbohyd Polym, 2005, 61: 125–131.
[19]
ChenX, Gao H, PloehnHJ . Montmorillonite-levan composite with improved thermal and mechanical properties[J]. Carbohyd Polym, 2014, 101: 565–573.
[20]
WangJW, Kuo YM. . Preparation of fructose mediated (polyethylene glycol/chitosan) membrane and adsorption of heavy metal ions[J]. J Appl Polym Sci, 2007, 105: 1480–1489.
[16]
Awda BJ, Mackenzie-Bell  M, Buhr MM . Reactive oxygen species and boar sperm function[J]. Biol Reprod, 2009, 81(3): 553–561
Pubmed
[17]
Silva PF, Gadella  BM. Detection of damage in mammalian sperm cells[J]. Theriogenology, 2006, 65(5): 958–978
Pubmed
[18]
Buhr M. Preservation of boar sperm alters membrane molecular dynamics[A]. Boar semen preservation II Proceedings of the Second International Conference on Boar Semen Preservation[C]. Beltsville, Maryland, USA, August 1990: 81–93.
[19]
Oehninger S, Blackmore  P, Mahony M , Effects of hydrogen peroxide on human spermatozoa[J]. J Assist Reprod Genet, 1995, 12(1): 41–47
Pubmed
[20]
McCauley TC, Mazza  MR, Didion BA , Chromosomal abnormalities in Day-6, in vitro-produced pig embryos[J]. Theriogenology, 2003, 60(8): 1569–1580
Pubmed
[21]
Watson PF. The causes of reduced fertility with cryopreserved semen[J]. Anim Reprod Sci, 2000, 60-61: 481–492
Pubmed
[22]
Malo C, Gil  L, Gonzalez N , Comparing sugar type supplementation for cryopreservation of boar semen in egg yolk based extender[J]. Cryobiology, 2010, 61(1): 17–21
Pubmed
[23]
Chanapiwat P, Kaeoket  K, Tummaruk P . Cryopreservation of boar semen by egg yolk-based extenders containing lactose or fructose is better than sorbitol[J]. J Vet Med Sci, 2012, 74(3): 351–354
Pubmed
[24]
Medrano A, García-Gil  N, Ramió L , Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa[J]. Mol Reprod Dev, 2006, 73(9): 1179–1194
Pubmed
[25]
Purdy P. A review on goat sperm cryopreservation[J]. Small Rumin Res, 2006, 63: 215–225.
[26]
De Leeuw FE, De Leeuw  AM, Den Daas JH , Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing[J]. Cryobiology, 1993, 30(1): 32–44
Pubmed
[27]
Gómez-Fernández J ,  Gómez-Izquierdo E ,  Tomás C , Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation[J]. Anim Reprod Sci, 2012, 133(1-2): 109–116
Pubmed
[28]
Saito K, Hira  T, Suzuki T , Effects of DFA IV in rats: calcium absorption and metabolism of DFA IV by intestinal microorganisms[J]. Biosci Biotechnol Biochem, 1999, 63(4): 655–661
Pubmed
[29]
Osborn HM, Khan  TH. Oligosaccharides: their synthesis and biological roles: Oxford University Press on Demand[J], 2000.
[30]
Abeydeera LR, Day  BN. In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium[J]. Theriogenology, 1997, 48(4): 537–544
Pubmed
[31]
Romar R, Funahashi  H, Coy P . In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years[J]. Theriogenology, 2016, 85(1): 125–134
Pubmed

Acknowledgments

We thank Hee-Jung Lee for assistance with the experiments, and Agency for Korea National Food Cluster for HPLC analysis. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A6A3A-04063769).

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved.
PDF(373 KB)

Accesses

Citations

Detail

Sections
Recommended

/