Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients

Xunxian Liu , Zemin Yao

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 248 -255.

PDF (272KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (3) : 248 -255. DOI: 10.7555/JBR.31.20160096
Original Article
Original Article

Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients

Author information +
History +
PDF (272KB)

Abstract

Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C (IL-17RC), a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration (AMD), was associated with altered activation of phosphatidylinositide 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 (GSK3). We wondered whether or not altered PI3K, Akt, and GSK3 activities could be detected in peripheral blood mononuclear cells (PBMC) obtained from AMD patients. In the patients' PBMC, absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed, which was accompanied with increased phosphorylation of GSK3 substrates (e.g. CCAAT enhancer binding protein α, insulin receptor substrate 1, and TAU), indicative of enhanced GSK3 activation. In addition, decreased protein mass of PI3K85α and tyrosine-phosphorylation of PI3K50α was present in PBMC of the AMD patients, suggesting impaired PI3K activation. Moreover, abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients. These data demonstrate that despite the presence of high levels of IL-17RC, Wnt-3a and vascular endothelial growth factor, the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients. Thus, measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.

Keywords

phosphatidylinositide 3-kinase (PI3K) / protein kinase B (PKB or Akt) / glycogen synthase kinase 3 (GSK3) / age-related macular degeneration (AMD) / peripheral blood mononuclear cells (PBMC)

Cite this article

Download citation ▾
Xunxian Liu, Zemin Yao. Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients. Journal of Biomedical Research, 2017, 31(3): 248-255 DOI:10.7555/JBR.31.20160096

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Materials and methods

Human blood samples

Preparation of PBMC

Immunoblotting and semi-quantification

Cell lysate preparation, immunoblotting procedures, antibodies and their sources have been described[]. The antibodies purchased from Santa Cruz Biotechnology (Santa Cruz, CA) were: α-Akt (#sc-8312), α-c-Myc (#sc-788), α-cyclin D1 (#sc-718), α-GSK3 (#sc-56913), α-GSK3α (#sc-7879), α-GSK3β (#sc-9166), α-IL-17RC (#sc-99936), α-insulin receptor substrate 1 (IRS1) (#sc-559), α-pAkt (#sc-135650), α-pGSK3β (#sc-11757-R), α-PI3K (#sc-423), α-pPI3K (#sc-12929-R), α-TAU (#sc-1995), α-VEGF (#sc-152), and α-Wnt-3a (#sc-136163). The α-CCAAT enhancer binding protein α (c/EBPα) (#2295), α-pc/EBPα (#2844), and α-pIRS1 (#2580) antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA), and the α-GAPDH antibody (#2-RGM2) was obtained from Advanced ImmunoChemical (Long Beach, CA, USA). After SDS-PAGE and transfer, the blots were blocked by 5% bovine serum albumin (Sigma Aldrich, St. Louis, MO, USA) in the described buffer[] for one hour. Then, the blots were incubated with different primary antibodies (rabbit antibodies: 1:500; mouse antibodies: 1:200) overnight. The blots were washed by the buffer for three times and then incubated with corresponding secondary antibodies conjugated with Horseradish peroxidase (1:1,000 for rabbit antibodies and 1:200 for mouse antibodies) for one hour. The blots were washed by the buffer twice and washed by the buffer without Tween-20 once. The enhanced chemiluminescence technique was applied to visualize the immuno-reactive proteins. The immunoblots were exposed for different period of times to ensure linearity of the intensity of protein bands, prior to semi-quantification by scanning densitometry using NIH Image J.

Statistical analysis

Results

Increased levels of IL-17RC, Wnt-3a, and VEGF in PBMC of AMD patients

Insensitivity of PI3K/Akt/GSK3 signaling in PBMC of AMD patients

Increased phosphorylation levels of GSK3 substrates in PBMC of AMD patients

Discussion

First, GSK3 activation is present in many chronic/age-related metabolic abnormalities, including AMD[]. Association of AMD with other chronic/age-related metabolic abnormalities, such as type 2 diabetes (T2D), and Alzheimer disease, has been reported previously. For instance, the Reykjavik Study has shown that late AMD being a predictor of mortality at mid-octogenarian years[]. An association of diabetes with neovascular AMD, but not with geographic atrophy, has been observed in a cross-sectional population-based study with patients of>65 years old (EUREYE study)[]. A 10-year cardiovascular mortality and risk factor study suggested AMD be an independent risk factor of cardiovascular mortalities in T2D patients[], even though a systematic meta-analysis does not reveal a significant relationship between early AMD and incident stroke[]. Importantly, high GSK3 activity has been observed in many of these chronic/age-related diseases, including Alzheimer's disease, T2D[], Parkinson disease[], and even cancer[,]. The GSK3-catalyzed serine-phosphorylation of IRS1 plays a crucial role in the development of T2D[], and GSK3-catalyzed hyper-phosphorylation of TAU has been implicated in the development of Alzheimer's disease[]. In the present study, we observed increased phosphorylation of IRS1 and TAU, as well as increased phosphorylation of c/EBPα in PBMC of the AMD patients (Fig. 3). This result, although preliminary, may suggest that uncontrolled GSK3 activation is a systematic manifestation of many chronic/age-related disorders with a common mechanistic underpinning,i.e. overstimulation-induced-insensitivity of PI3K/Akt/GSK3 pathway[].

References

[1]

Wang HHan  XWittchen ES TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation[J]. Mol Vis201622: 116–128

[2]

Bhutto ILutty  G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex[J]. Mol Aspects Med201233(4): 295–317

[3]

Morohoshi KGoodwin  AMOhbayashi M Autoimmunity in retinal degeneration: autoimmune retinopathy and age-related macular degeneration[J]. J Autoimmun200933(3-4): 247–254

[4]

Janeway CA Jr Travers P Walport M  The complement system and innate immunity. In: Charles A Janeway, Jr, Paul Travers, Mark Walport, et al., Editors. Immunobiology: The Immune System in Health and Disease, 5th edition[M].New York: Garland Science. 2001.

[5]

Zipfel PFLauer  NSkerka C . The role of complement in AMD[J]. Adv Exp Med Biol2010703: 9–24

[6]

Wei LLiu  BTuo J Hypomethylation of the IL17RC promoter associates with age-related macular degeneration[J]. Cell Rep20122(5): 1151–1158

[7]

Oliver VFFranchina  MJaffe AE Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration[J]. Cell Rep20135(6): 1527–1535

[8]

Liu X. Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity[J]. Springerplus20143: 356

[9]

Zhou THu  YChen Y The pathogenic role of the canonical Wnt pathway in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci201051(9): 4371–4379

[10]

Jope RSJohnson  GV. The glamour and gloom of glycogen synthase kinase-3[J]. Trends Biochem Sci200429(2): 95–102

[11]

Watcharasit PBijur  GNZmijewski JW Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage[J]. Proc Natl Acad Sci U S A200299(12): 7951–7955

[12]

Grimes CAJope  RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium[J]. J Neurochem200178(6): 1219–1232

[13]

Carpenter CLDuckworth  BCAuger KR Purification and characterization of phosphoinositide 3-kinase from rat liver[J]. J Biol Chem1990265(32): 19704–19711

[14]

Liu XLu  XSong K Natural functions of PLIN2 mediating Wnt/LiCl signaling and GSK3/GSK3 substrates-related effects are modulated by lipid[J]. Mol Cell Biol2015(3)36: 421–437

[15]

Liu XYao  Z. Chronic over-nutrition and dysregulation of GSK3 in diseases[J]. Nutr Metab (Lond)201613: 49

[16]

Cooke Bailey JN Hoffman JD Sardell RJ The application of genetic risk scores in age-related macular degeneration: a review[J]. J Clin Med20165(3): 31

[17]

Gemenetzi MLotery  AJ. Complement pathway biomarkers and age-related macular degeneration[J]. Eye (Lond)201630(1): 1–14

[18]

Wang YWang  VMChan CC . The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment[J]. Eye (Lond)201125(2): 127–139

[19]

Fisher DEJonasson  FEiriksdottir G Age-related macular degeneration and mortality in community-dwelling elders: the age, gene/environment susceptibility Reykjavik study[J]. Ophthalmology2015122(2): 382–390

[20]

Topouzis FAnastasopoulos  EAugood C Association of diabetes with age-related macular degeneration in the EUREYE study[J]. Br J Ophthalmol200993(8): 1037–1041

[21]

Fernandez ABPanza  GACramer B Age-related macular degeneration and incident stroke: a systematic review and meta-analysis[J]. PLoS One201510(11): e0142968

[22]

Moore SFvan den Bosch  MTHunter RW Dual regulation of glycogen synthase kinase 3 (GSK3)α/β by protein kinase C (PKC)α and Akt promotes thrombin-mediated integrin αIIbβ3 activation and granule secretion in platelets[J]. J Biol Chem2013288(6): 3918–3928

[23]

Li DWLiu  ZQChen W Association of glycogen synthase kinase-3β with Parkinson's disease (review)[J]. Mol Med Rep20149(6): 2043–2050

[24]

Rakoff-Nahoum S. Why cancer and inflammation[J]? Yale J Biol Med200679(3-4): 123–130

[25]

Jope RSYuskaitis  CJBeurel E . Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics[J]. Neurochem Res200732(4-5): 577–595

[26]

Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin[J]. Diabetes200655(8): 2392–2397

[27]

Yu YRun  XLiang Z Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases[J]. J Neurochem2009108(6): 1480–1494

RIGHTS & PERMISSIONS

2017 by the Journal of Biomedical Research. All rights reserved

AI Summary AI Mindmap
PDF (272KB)

783

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/