Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins

Vassilis I. Zannis, Shi Su, Panagiotis Fotakis

Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (6) : 471-485.

PDF(639 KB)
PDF(639 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (6) : 471-485. DOI: 10.7555/JBR.31.20160082
Review Article
Review Article

Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins

Author information +
History +

Abstract

In this review, we focus on the pathway of biogenesis of HDL, the essential role of apoA-I, ATP binding cassette transporter A1 (ABCA1), and lecithin: cholesterol acyltransferase (LCAT) in the formation of plasma HDL; the generation of aberrant forms of HDL containing mutant apoA-I forms and the role of apoA-IV and apoE in the formation of distinct HDL subpopulations. The biogenesis of HDL requires functional interactions of the ABCA1 with apoA-I (and to a lesser extent with apoE and apoA-IV) and subsequent interactions of the nascent HDL species thus formed with LCAT. Mutations in apoA-I, ABCA1 and LCAT either prevent or impair the formation of HDL and may also affect the functionality of the HDL species formed. Emphasis is placed on three categories of apoA-I mutations. The first category describes a unique bio-engineered apoA-I mutation that disrupts interactions between apoA-I and ABCA1 and generates aberrant preβ HDL subpopulations that cannot be converted efficiently to α subpopulations by LCAT. The second category describes natural and bio-engineered apoA-I mutations that generate preβ and small size α4 HDL subpopulations, and are associated with low plasma HDL levels. These phenotypes can be corrected by excess LCAT. The third category describes bio-engineered apoA-I mutations that induce hypertriglyceridemia that can be corrected by excess lipoprotein lipase and also have defective maturation of HDL. The HDL phenotypes described here may serve in the future for diagnosis, prognoses and potential treatment of abnormalities that affect the biogenesis and functionality of HDL.

Keywords

HDL biogenesis / HDL phenotypes / apolipoprotein A-I mutations / apolipoprotein E / apolipoprotein A-IV / ATP- binding cassette transporter A1 (ABCA1)

Cite this article

Download citation ▾
Vassilis I. Zannis, Shi Su, Panagiotis Fotakis. Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins. Journal of Biomedical Research, 2017, 31(6): 471‒485 https://doi.org/10.7555/JBR.31.20160082

1 The pathway of the biogenesis of HDL-AI, the role of ABCA1 and LCAT and the potential functions of HDL

The first step in the biogenesis of HDL containing apoA-I (HDL-AI) is the interaction of apoA-I that is secreted by the liver and the intestine[1], with the ABCA1 transporter. This interaction transfers cellular phospholipids and free cholesterol to apoA-I in vitro. The same interaction in vivo causes gradual lipidation of apoA-I that leads to the formation of discoidal particles that are enriched in unesterified cholesterol. In a subsequent step, LCAT esterifies the free cholesterol[2] and converts the discoidal to spherical HDL particles (Fig. 1A). A similar pathway is used in vivo for the generation of HDL containing apoE and apoA-IV that are designated HDL-E and HDL-AIV.
Fig.1 The pathway of the biogenesis of HDL and the consequence of mutations in apoA-I, ABCA1 and LCAT.

Full size|PPT slide

The role of the exchangeable apolipoproteins apoA-I, apoA-IV, apoC-III and apoE in hepatic lipoprotein assembly and secretion has been reviewed elsewhere[5]. In the case of apoA-I, using recombinant adenovirus mediated gene transfer of human apoA-I in primary hepatocytes obtained from apoA-I -/- or ABCA1 -/- mice, it has been shown that a portion of the apoA-I is secreted in a lipidated form and that the lipidation is partially dependent on ABCA1[6]. Two other studies in HepG2 cells and primary mouse hepatocytes support the intracellular lipidation of apoA-I[78]. The initial phospholipidation of apoA-I occurs in the endoplasmic reticulum (ER) and is partially ABCA1 dependent. However, the bulk of the lipidation by phospholipids and cholesterol occurs in the Golgi and pericellularly at the plasma membrane, respectively and is ABCA1 dependent[8]. Following secretion, the intracellularly lipidated apoA-I has the ability to interact with ABCA1 on the plasma membrane and contribute to the biogenesis of HDL as depicted inFig. 1A.
Following synthesis, HDL is modified by hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), and interacts with SR-BI and ABCG1 andvia signaling pathways exerts its biologic functions[910]. HDL promotes cholesterol efflux[1112], prevents oxidation of LDL[1314], inhibits cell apoptosis[15] as well as the expression of proinflammatory cytokines by macrophages[1617] and the expression of adhesion molecules, chemokines and chemokine receptors by endothelial cells[1820]. HDL cholesterol levels are positively associated with the risk of venous thrombosis[2122], may have beneficial effects on glucose metabolism[2324] and the function of beta pancreatic cells[25]. Interaction of HDL with the HDL receptor, SR-BI, initiates signaling pathways that promote endothelial cell proliferation and migration[26] as well as release of nitric oxide (NO) that causes vasodilation[27]. HDL also inhibits platelet aggregation and thrombosis[28] and has antibacterial, antiparasitic and antiviral activities[2931]. Due to these properties HDL is thought to protect the endothelium and inhibit several steps in the cascade of events that lead to the pathogenesis of atherosclerosis and various other human diseases[9,32].

1.1 Structural features of apoA-I that contribute to the formation of HDL-A-I

ApoA-I contains 22- or 11-amino acid repeats, which are organized in amphipathic α-helixes[3334]. A belt model was proposed, taking into account the 3-D structure of apoA-I in solution that was designed to explain the structure of apoA-I on discoidal HDL particles[3537]. Based on structural work and cross-linking studies various models have been also proposed to explain the arrangement of apoA-I on spherical HDL particles[3840].

1.2 ABCA1 and its in vitro interactions with apoA-I

The ABCA1 transporter is a ubiquitous protein that is synthesized by the liver and various other tissues[4142]. It is localized only on the basolateral surface of the hepatocytes[43] and on endocytic vesicles and there is evidence that ABCA1 travels between late endocytic vesicles and the cell surface[44]. In cell cultures, ABCA1 promotes efflux of cellular phospholipids and cholesterol to lipid free or minimally lipidated apoA-I and other apolipoproteins, but not to spherical HDL particles[4546].
Using cell culture and in vitro experiments, we investigated the ability of apoA-I mutants to promote ABCA1 mediated efflux of cholesterol and phospholipids and to crosslink to ABCA1.
It was found that the ABCA1 mediated efflux was diminished by C-terminal deletions in which residues 220-231 were removed, but was not affected by N-terminal deletions or deletion of the C-terminal 232-243 residues. Unexpectedly, efflux was restored to 80% of WT control by double deletions of both the amino- and carboxy-termini of apoA-I[2,4748]. Lipid efflux was either unaffected or moderately reduced by a variety of point mutations or deletions of internal apoA-I helices. A reasonable interpretation of these findings is that different combinations of central helices can promote lipid efflux[49]. Chemical cross-linking/immunoprecipitation experiments showed that the ability of apoA-I mutants to promote ABCA1-depended lipid efflux was correlated with their ability to be cross-linked efficiently to ABCA1[49]. Other studies showed that the majority of the ABCA1 mutants that are found in patients with Tangier disease cross-link poorly to WT apoA-I and have diminished capacity to promote cholesterol efflux in vitro and HDL formationin vivo[5051]. A notable exemption is the ABCA1[W590S] mutant which had diminished capacity to promote cholesterol efflux but cross-linked stronger to apoA-I than the WT ABCA1[5052]. We suggested that in this case there is a strong but not productive binding of ApoA-I to ABCA1 that does not promote but rather prevents efficient lipid efflux[49].

1.3 In vivo interactions of ABCA1 with apoA-I lead to the biogenesis of HDL

Subjects carrying inactivating mutations in ABCA1 fail to form αHDL particles but instead they form preβ and other small size particles in their plasma[5356] (Fig. 1B). Formation of only preβ particles was detected in the plasma of the experimental animals that express a specific mutant apoA-I form (Fig. 1C), as well as in the plasma of LCAT-deficient humans (Fig. 1D). The particles shown in panels 1B and 1C may be created by mechanisms that involve non-productive interactions between ABCA1 and apoA-I[3,57].
Animal studies showed that inactivation of the hepatic and intestinal ABCA1 in mice led to the disappearance of HDL from plasma[56]. In liver-specific or whole body ABCA1 knockout mice, plasma HDL catabolism and the fractional catabolic rate of HDL by the liver and to a lesser extent by the kidney and the adrenal is increased, resulting in the removal of the nascent HDL particles from plasma before they reach maturation[56]. Intestinal-specific inactivation of the ABCA1 gene in mice decreased plasma HDL by 30%, but did not affect the apoA-I and cholesterol concentration in the lymph[58]. This implies that HDL that is produced in the intestine is not secreted into the lymph but is rather secreted directly into the plasma[58].

1.4 Specific mutations in apoA-I may affect apoA-I /ABCA1 interactions and inhibit the formation of spherical HDL

We have used adenovirus-mediated gene transfer of WT and mutant apoA-I to study the interactions of apoA-I with ABCA1. The adenoviruses were generated in cell cultures, purified, titrated and injected into the tail vein of apoA-I deficient or apoA-I and apoE double deficient mice. Four to five days post-infection plasma was collected and analyzed for lipids and lipoproteins and by two-dimensional gel electrophoresis to identify the HDL subpopulations. The plasma was fractionated by density gradient ultracentrifugation and fast protein liquid chromatography (FPLC) and the HDL fraction was analyzed by electron microscopy (EM) to assess the size and shape of HDL[3,48]. Additionally, the hepatic mRNA levels of apoA-I were determined to ensure that there was comparable expression of the WT and the mutant apoA-I forms[3,4748,59].
In the most recent studies, two sets of mutations within the 218-230 region of apoA-I, apoA-I[L218A/L219A/V221A/L222A] and apoA-I[F225A/V227A/F229A/L230A] (abbreviated apo A-I[218-222] and apoA-I[225-230]) were investigated using the methodologies described above[3,60]. Previous studies had shown that deletion of this region diminishes the ABCA1 mediated cholesterol efflux and inhibits the biogenesis of HDL[48,57].
Adenoviruses expressing the WT or the apoA-I[218-222] mutant were injected inapoA-I-/- and apoA-I-/- x apoE-/- mice and analyzed as described above[3,48]. It was found that the WT apoA-I when expressed in apoA-I-/- x apoE-/- mice floated predominantly in the HDL2/HDL3 region (Fig. 2A), generated spherical particles (Fig. 2B) and normal preβ and αHDL subpopulation (Fig. 2C). In contrast, the apoA-I[218-222] mutant when injected inapoA-I-/- x apoE-/- mice, the FPLC fractionation of the plasma showed the near absence of an HDL cholesterol peak[3], and density gradient ultracentrifugation of the plasma showed small amount of the apoA-I in HDL3 and in d<1.21 g/mL fractions (Fig. 2D). EM analysis showed the presence of few discoidal particles along with larger particles corresponding in size to IDL/LDL (Fig. 2E) and two-dimensional gel electrophoresis showed the presence of only preβ HDL particles (Fig. 2F). When the WT apoA-I and the apoA-I[218-222] mutant were injected inapoA-I-/- mice, the plasma apoA-I levels of the mutant were 15% of those of the WT apoA-I[3].
Fig.2 Analyses of the phenotype of the apoA-I[218-222] mutation that inhibits the conversion of the preβ to αHDL particles and the apoA-I[L141R]Pisa mutation that influences the activity of LCAT and is associated with low plasma HDL levels.

Full size|PPT slide

Co-expression of the apoA-I[218-222] mutant and human LCAT in apoA-I-/- x apoE-/- mice did not restore the HDL cholesterol peak as determined by FPLC analysis. Density gradient ultracentrifugation showed only small amount of the apoA-I in the HDL3 fraction (Fig. 2G), EM analysis showed the presence of a small number of HDL size particles (Fig. 2H), and the two-dimensional gel electrophoresis showed the presence of small amount of preβ and α4 HDL particles (Fig. 2I). These findings demonstrate that the LCAT treatment failed to convert efficiently the preβ to αHDL particles or to correct this specific defect in the biogenesis of HDL.
In addition to the unique role of the L218/L219/V221/L222 residues in the biogenesis of HDL, the same residues are also required to confer trans-endothelial transport capacity[61] and bactericidal activity[62] to apoA-I. These overall properties suggest that the L218/L219/V221/L222 residues represent an effector domain for several activities of apoA-I.
The phenotype generated by the expression of the apoA-I[225-230] mutant was similar to that obtained with the apoA-I[218-222] mutant. However co-expression of the apoA-I[225-230] mutant and human LCAT corrected the abnormal HDL levels, created normal preβ and αHDL subpopulations and generated spherical HDL particles[60].
Overall, the phenotype produced by the apoA-I[218-222] mutant is distinct from all other phenotypes generated previously by apoA-I mutations. This phenotype cannot be corrected by overexpression of LCAT. Although other interpretations are possible, the in vivo and in vitro data suggest that the interaction of the apoA-I[218-222] mutant with ABCA1 results in defective lipidation of apoA-I that leads to the generation of aberrant preβ HDL particles. It appears that these particles are not a good substrate for LCAT and cannot proceed to form discoidal and spherical HDL. If this interpretation is correct, the normal lipidation of apoA-I may require a precise initial orientation of the apoA-I ligand within the binding site of ABCA1 that is similar to that described for enzyme-substrate interactions. Correct configuration would allow correct lipidation of apoA-I, which, could subsequently undergo cholesterol esterification and formation of mature spherical HDL particles. In our case the incorrectly lipidated apoA-I becomes a poor substrate for LCAT and cannot form discoidal and spherical HDL particles.

2 Interactions of lipid-bound ApoA-I with LCAT lead to cholesterol esterification and formation of spherical HDL

Plasma LCAT is a 416 amino acid long plasma protein that interacts with discoidal and spherical HDL and catalyzes the transfer of the 2-acyl group of lecithin or phosphatidylethanolamine to the free hydroxyl residue of cholesterol to form cholesteryl ester, using apoA-I as an activator[63,64]. It also catalyzes the reverse reaction of esterification of lysolecithin to lecithin[65]. The esterification of free cholesterol of HDL in vivo and in vitro converts the discoidal to mature spherical HDL particles[66,67]. Mutations in LCAT are associated with two phenotypes in humans. The first is the familial LCAT deficiency (FLD) which is characterized by the inability of the mutant LCAT to esterify cholesterol on HDL and LDL and leads to the accumulation of discoidal HDL in the plasma. The second is the fish eye disease (FED) which is characterized by the inability of mutant LCAT to esterify the cholesterol of HDL whereas it maintains its ability to esterify the cholesterol of LDL. Both diseases are characterized by low HDL levels[68] and formation of preβ and α4 HDL subpopulations.
Analysis of plasma of LCAT deficient mice by 2D gel electrophoresis showed the presence of preβ and small size α4 HDL particles. Expression of human LCAT by adenovirus mediated gene transfer in LCAT deficient mice generated large size αHDL subpopulations. In contrast, expression of the LCAT [T147I] mutant generated preβ HDL along with small size α4, α3 and α2 HDL subpopulations[69].

2.1 ApoA-I mutations that affect apoA-I/LCAT interactions

Several naturally occurring apoA-I mutations reduce the capacity of apoA-I to activate LCAT in vitro[2,70]. Two of these mutations, the apoA-I[L141R]Pisa and the apoA-I[L159R]FIN, were studied in detail by adenovirus mediated gene transfer[71].
Earlier studies had shown that hemizygotes for an apoA-I null allele and an apoA-I[L141R]Pisa allele had greatly decreased plasma apoA-I levels and near absence of HDL cholesterol and abnormal HDL subpopulations.
Other studies also showed that heterozygotes for apoA-I[L159R]FIN mutation had greatly reduced plasma levels of HDL cholesterol and apoA-I, abnormal HDL subpopulations and increased catabolism of apoA-I[72].
In vitro studies initially showed that both mutants were secreted efficiently from cells, had normal ability to promote ABCA1-mediated cholesterol efflux but greatly diminished capacity to activate LCAT (0.4%-2% of WT apoA-I)[71]. Adenovirus-mediated gene transfer showed that compared to WT apoA-I (Fig. 2A), expression of either of the two mutants in apoA-I -/- mice greatly decreased total plasma cholesterol and apoA-I levels as well as the HDL cholesterol peak as determined by FPLC fractionation of the plasma. Density gradient ultracentrifugation of plasma showed great reduction of the amount of apoA-I that floated in the HDL region of the apoA-I[L141A]Pisa mutant as compared to WT apoA-I (Fig. 2J). EM analysis of the HDL fractions obtained by density gradient ultracentrifugation showed the presence of a large number of spherical HDL for the WT apoA-I but only a few spherical HDL particles for the apoA-I[L141A]Pisa mutant (Fig. 2K). Two-dimensional gel electrophoresis of the plasma showed the formation of small amount of preβ HDL and large amount of α1, α2, α3, and, α4 HDL subpopulations for the WT apoA-I and only preβ and small size α4-HDL subpopulations for the apoA-I[L141A]Pisa mutant (Fig. 2L).
Co-infection of apoA-I-/- mice with adenoviruses expressing either of the two mutants and human LCAT normalized the plasma apoA-I, the total plasma cholesterol levels and the CE/TC ratio, increased the HDL cholesterol peak and the amount of apoA-I that floated in the HDL region (Fig. 2M). It also generated large amount of spherical HDL (Fig. 2N) and restored the normal preβ and αHDL subpopulations (Fig. 2O). Similar results were obtained for the apoA-I[L159R]FIN mutant[71]. Analysis of the relative abundance of the endogenous mouse LCAT following gene transfer in apoA-I -/- mice showed a dramatic decrease of the mouse LCAT in mice expressing the apoA-I[L141R]Pisa mutant alone as compared to mice expressing the WT apoA-I. The mouse LCAT levels could be restored to normal by co-infection ofapoA-I€-/- mice with the apoA-I[L141R]Pisa mutant and human LCAT (Fig. 2P). The depletion of the endogenous mouse LCAT could be the result of rapid degradation of endogenous mouse LCAT bound to minimally lipidated apoA-I mutants possibly by the kidney (Fig. 2Q).
Another interesting naturally occurring apoA-I mutation is the apoA-I[R160L]Oslo. Previous studies showed that heterozygotes of apoA-I[R160L]Oslo have approximately 60% and 70% of normal HDL and apoA-I levels respectively, form preβ1 and small size αHDL particles and have a 30% reduction in their plasma LCAT activity[73]. Gene transfer of the apoA-I[R160L]Oslo mutant in apoA-I -/- mice resulted in low plasma cholesterol and apoA-I levels and generated discoidal particles with α4 electrophoretic mobility. The aberrant phenotype could be corrected by co-expression of this mutant with human LCAT[67].
Similar but not identical phenotypes were produced by expressing the bioengineered apoA-I[R160V/H162A] and apoA-I[R149A] mutants and the naturally occurring mutants apoA-I[R151C]Paris and apoA-I[L144R]Zaragosa[67,7475]. These phenotypes could be corrected by co-expression of the mutant apoA-I with human LCAT.

3 ApoA-I mutations may induce hypertriglyceridemia and/or hypercholesterolemia

An apoA-I deletion mutant, the apoA-I[D89-99], when expressed in apoA-I -/- mice, increased plasma cholesterol levels, increased the plasma preβ HDL subpopulation, generated discoidal HDL particles, but did not induce hypertriglyceridemia[76].
Furthermore, a series of apoA-I mutations that included the apoA-I[D(62-78)], the apoA-I [E110A/E111A], and apoA-I[D89A/E91A/E92A] in apoA-I-/- mice resulted in severe hypertriglyceridemia[7678]. In the case of apoA-I[E110A/E111A] and apoA-I[D89A/E91A/E92A] mutations, negatively charged residues were substituted by alanines. In the case of the apoA-I[D(62-78)] deletion, there was a loss of the negatively charged residue E78. As explained below, the loss of negatively charged residues may be a determining factor for the development of hypertriglyceridemia. All apoA-I mutants of this category were studied in detail by in vivo and in vitro experiments. The studies involving the apoA-I[D89A/E91A/E92A] mutant are presented in some detail bellow[78].
The in vitro studies showed that the capacity of the apoA-I[D89A/E91A/E92A] mutant to promote ABCA1-mediated cholesterol efflux and activate LCAT was approximately 2/3 of that of WT apoA-I. However, the in vivo analyses following adenovirus-mediated gene transfer inapoA-I-/- mice showed that compared to WT apoA-I, this mutant increased plasma cholesterol, reduced the HDL cholesterol peak and the CE/TC ratio, and caused severe hypertriglyceridemia (Table 1)[78]. Following density gradient ultracentrifugation of plasma, approximately 40% of the apoA-I mutant was distributed in VLDL/IDL region as compared to the WT that was distributed predominantly in the HDL2/HDL3 region (Fig. 3A, B). EM analysis showed that the apoA-I[D89A/E91A/E92A] mutant formed mostly spherical and few discoidal HDL particles (Figs. 3E), whereas the WT apoA-I formed exclusively spherical particles (Fig. 3D). Two-dimensional gel electrophoresis showed that the apoA-I[D89A/E91A/E92A] mutant formed mostly preβ and some α4 HDL subpopulations (Fig. 3H) and the WT apoA-I formed small amounts of preβ and normal αHDL subpopulations (Fig. 3G)[78].
Fig.3 Analyses of the phenotype of the apoA-I[D89A/E91A/E92A] mutation that induces hypertriglyceridemia and the potential role of solvent inaccessible salt bridges in the induction of hypertriglyceridemia.

Full size|PPT slide

Overall these analyses showed that the apoA-I[D89A/E91A/E92A] mutations generated an abnormal lipid and lipoprotein profile characterized by severe hypertriglyceridemia and defective maturation of HDL. The phenotype generated by this mutant is distinct. Another apoA-I[K94A/K96A] mutant in the vicinity of residues 89-92, where the positively charged residues were changed to alanines, had similar lipid, lipoprotein and HDL profiles to those of WT apoA-I[78].
Co-expression of apoA-I[D89A/E91A/E92A] mutant and human lipoprotein lipase in apoA-I-/- mice abolished hypertriglyceridemia, redistributed apoA-I in the HDL2/HDL3 regions (Fig. 3C), restored in part the α1, 2, 3, and 4 HDL subpopulations (Fig. 3I), but did not change significantly the CE/TC ratio or the formation of discoidal HDL particles (Fig. 3F)[78].
The persistence of discoidal particle following the lipoprotein lipase treatment indicates a direct effect of the [D89A/E91A/E92A] mutations in the activation of LCAT in vivo.
Similarly to apoA-I[D89A/E91A/E92A], two other mutants in different regions of apoA-I, the apoA-I[D(62-78)] and the apoA-I [E110A/E111A][7677], caused hypertriglyceridemia (Table 1). The affinity of the apoA-I[D89A/E91A/E92A], apoA-I[D(62-78)], and apoA-I [E110A/E111A] mutants for triglyceride (TG)-rich lipoprotein particles is further supported by binding studies of these mutants to TG-rich emulsion particles[7879].
A common feature of all these three mutants is that they caused accumulation of apoA-I in the VLDL/IDL region. It was shown previously that apoA-I containing TG-rich lipoprotein fractions inhibited theirin vitro lipolysis by exogenous lipoprotein lipase[7677]. All three apoA-I mutants studied have lost negative charged residues that are present in the WT sequence. The E78, D89 and E111 residues that are located in helices 2, 3, and 4 of the WT apoA-I have the ability to form solvent inaccessible salt bridges with the positively charged residues R188, R177 and H155 present in antiparallel helices 8, 7, and 6 respectively on the surface of a discoidal HDL particle[37] (Fig. 3J). It is conceivable that loosening of the structure of apoA-I around the D89 or E92 area due to the substitution of the original residues by alanines may provide new surfaces for interaction of HDL with other proteins or lipoprotein particles such as VLDL in ways that inhibit TG hydrolysis.
The preceding analyses described in Fig. 2 and 3 demonstrate that expression of mutant apoA-I forms in different mouse models disrupted specific steps along the pathway of the biogenesis of HDL and generated discrete lipid and HDL phenotypes[80]. Fig. 4A shows the location of the apoA-I mutations in the secondary structure of apoA-I. The phenotypes generated by these mutations include inhibition of the formation of HDL[3,48]; generation of unstable intermediates[75]; inhibition of the activation of LCAT[67]; increase in plasma cholesterol or increase in both plasma cholesterol and TG[7678] (Fig. 4B).
Fig.4 Schematic representation of the secondary structure of apoA-IŽ[33,8182].

Full size|PPT slide

4 ApoE and apoA-IV participate in the biogenesis of HDL particles containing the corresponding apolipoproteins

In vitro studies have shown that lipid-free apoE and apoA-IV promoted ABCA1-mediated cholesterol efflux, with the same efficiency as apoA-I[8384]. Other studies have indicated that apoE may participate in the early stage of apoB lipidation in the ER[85] but no role has been assigned to apoE for the biogenesis of HDL.
Our in vivo studies have shown that apoE, regardless of its phenotype, participates in the biogenesis of apoE-containing HDL particles (HDL-E) using a similar pathway that is used for the biogenesis of apoA-I containing HDL particles[86]. Initially, gene transfer of anapoE4-expressing adenovirus in apoA‐I-/- mice, which cannot synthesize HDL, increased both the HDL and the TG-rich VLDL/IDL/LDL fraction, generated discoidal HDL-E particles(Fig. 5A), and induced hypertriglyceridemia. The essential role of LCAT for the maturation of HDL-E was established by co-infection of theapoA‐I-/- mice with a mixture of adenoviruses expressing both apoE4 and human LCAT. This treatment converted the discoidal to spherical HDL-E particles (Fig. 5B). It also cleared the TG-rich lipoproteins found in the VLDL/IDL/LDL region and increased the HDL cholesterol peak as determined by FPLC[86]. Control apoA-I-/- mice did not form HDL size particles (Fig. 5C). The involvement of ABCA1 in the biogenesis of HDL-E was established by gene transfer of apoE4 in ABCA1-/- mice. HDL was not present in the plasma of these mice after treatment with the apoE4 expressing adenovirus(Fig. 5D), indicating that apoE4 could not promote formation of HDL-E particles in the absence of ABCA1.
Fig.5 Participation of apoE and apoA-IV in the biogenesis of apoE- and apoA-IV containing HDL particles.

Full size|PPT slide

Overall, our findings combined with previous knowledge of the functions of apoE indicate that apoE has a dual functionality. In addition to its documented role in the clearance of TG-rich lipoproteins, it participates in the biogenesis of HDL-E in a process that is similar to that of apoA-I.
HDL-E thus formed may have antioxidant[1314] and anti-inflammatory[16,1820] and other functions similar to those described for apoA-I-containing HDL[9], which may account for its atheroprotective properties[87]. In addition, apoE-containing HDL may also have important biologic functions in the brain[88].
A similar set of gene transfer experiments established that similar to apoE, apoA-IV also participates in the biogenesis of apoA-IV containing HDL (HDL-AIV) and requires for this purpose the activity of ABCA1 and LCAT[84].
Thus, gene transfer of apoA-IV in apoA-I -/- mice, that express the endogenous mouse apoE gene, did not change plasma lipid levels and resulted in the appearance of the apoA-IV in HDL2/HDL3 region(Fig. 5E). This treatment also generated spherical particles (Fig. 5F) and α- and few preβ-like HDL subpopulations (Fig. 5G). Spherical HDL particles were not detectable following gene transfer of apoA-IV in ABCA1-/- or LCAT -/- mice (Fig. 5H, I). These findings indicate that both ABCA1 and LCAT are required for the biogenesis of HDL-AIV[84]. The ability of apoA-IV to promote biogenesis of HDL-AIV may explain its previously reported anti-inflammatory[8990] and atheroprotective[9092] properties.
In contrast to the experiments performed in apoA-I-/- mice, gene transfer of apoA-IV in the apoA-I-/- x apoE-/- mice, resulted in the distribution of 80% of apoA-IV in the VLDL/IDL region where apoB is also found and the mice developed hypertriglyceridemia (Table 1). This suggests that deficiency of both apoA-I and apoE may have increased the affinity of apoA-IV for apoB-containing lipoprotein particles and this might have triggered hypertriglyceridemia[84]. Other studies also showed that hepatic expression of apoA-IV in mice enhanced triglyceride secretion, reduced hepatic triglyceride content and increased the size of the VLDL particle without changing apoB secretion[93]. The opposite effect was obtained when SREBP-1a transgenic mice were crossed with apoA-IV-/- mice. In SREBP-1a-Tg x apoA-IV-/- mice, the hepatic triglyceride secretion rate and the size of the VLDL particles were decreased without change in apoB production[93]. Consistently with the in vivo data, earlier cell culture studies in McA-RH7777 rat hepatoma cells had shown that apoA-IV increased triglyceride and VLDL secretion[94]. In the light of these studies[9394] a possible interpretation of our results could be that in the absence of apoA-I, the expression of apoA-IV in the liver promotes the formation of HDL-AIV. However, in the absence of both apoA-I and apoE, there appears to be an enhanced interaction of apoA-IV with apoB in the secretory pathway that increases VLDL secretion and causes hypertriglyceridemia. This hypothesis can be tested by measurement of VLDL triglyceride secretion rate in mice expressing apoA-IV inapoA-I-/- x apoE-/- mice.
Tab.1 Plasma lipids and hepatic mRNA levels of apoA-I -/- or apoA-I-/- x apoE -/- mice expressing WT and the mutant forms of human apoA-I or apoE4 or apoA-IV in the presence and absence of human lipoprotein lipase (hLPL) or human LCAT (hLCAT) as indicated.
Protein expressed
in apoA-I -/- mice
Cholesterol (mg/dL) CE/TC Triglycerides (mg/dL) Relative apoA-I/E4/A-IV mRNA (%) Plasma apoA-I/E4/A-IV (mg/dL)
apoA-I -/- 33±6 - 42±7 - -
WT apoA-I 268±55 0.72±0.06 70±11 100±32 283±84
apoA-I [D89A/E91A/E92A] 497±139 0.36±0.31 2106±1629 101±24 235±106
apoA-I [D89A/E91A/E92A] + hLPL 122±56 0.44±0.14 49±16 41±6 99±18
apoA-I [ D(62-78)] 220±16 - 986±289 130±5 265±36
apoA-I [E110A/E111A] 520±45 - 1510±590 69±23 204±27
WT apoE4 561±6 - 1368±102 100 154±4
WT apoE4+ hLCAT 347±8 - 77±11 218 89±2
WT apoA-IV expressed in apoA-I -/- mice 52±17 - 18±12 100 -
apoA-I -/- x apoE -/- 450±136 - 112±80 - -
WT apoA-IV expressed in apoA-I -/- x apoE -/- mice 746±116 - 449±79 70 -

5 Clinical relevance of the aberrant HDL phenotypes

The HDL phenotypes observed in human patients carrying the apoA-I[L141R]Pisa and apoA-I[L159R]FIN mutations resemble closely the phenotypes observed in apoA-I -/- mice expressing these mutants and indicates the validity of the gene transfer studies in mice to establish defects in HDL biogenesis. It is possible that phenotypes generated by mutagenesis of apoA-I may exist in the human population and can be detected by one or more of the analyses described above. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I or other conditions that result in low HDL levels[95].
The potential contribution of apoA-I mutations to hypertriglyceridemia in humans is interesting. Hypertriglyceridemia resulting from apoA-I mutations may be further aggravated by other genetic and environment factors such as diabetes and thyroid status. The contribution of apoA-I mutations to hypertriglyceridemia could be addressed in future studies in selected populations of patients with hypertriglyceridemia of unknown etiology.

References

[1]
Zannis VI, Cole  FS, Jackson CL , Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages[J]. Biochemistry, 1985, 24(16): 4450–4455.
Pubmed
[2]
Zannis VI, Chroni  A, Krieger M . Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL[J]. J Mol Med (Berl), 2006, 84(4): 276–294.
Pubmed
[3]
Fotakis P, Kateifides  AK, Gkolfinopoulou C , Role of the hydrophobic and charged residues in the 218-226 region of apoA-I in the biogenesis of HDL[J]. J Lipid Res, 2013, 54(12): 3281–3292.
Pubmed
[4]
Daniil G, Phedonos  AA, Holleboom AG , Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders[J]. Clin Chim Acta, 2011, 412(13-14): 1213–1220.
Pubmed
[5]
Sundaram M, Yao  Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion[J]. Arterioscler Thromb Vasc Biol, 2012, 32(5): 1073–1078.
Pubmed
[6]
Kiss RS. McManus   DC, Franklin  V , The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and-independent pathways[J]. J Biol Chem, 2003, 278(12): 10119–10127
Pubmed
[7]
Chisholm JW, Burleson  ER, Shelness GS , ApoA-I secretion from HepG2 cells: evidence for the secretion of both lipid-poor apoA-I and intracellularly assembled nascent HDL[J]. J Lipid Res, 2002, 43(1): 36–44.
Pubmed
[8]
Maric J, Kiss  RS, Franklin V , Intracellular lipidation of newly synthesized apolipoprotein A-I in primary murine hepatocytes[J]. J Biol Chem, 2005, 280(48): 39942–39949.
Pubmed
[9]
Zannis VI, Kateifides  AK, Fotakis P ,  (2012) Pleiotropic functions of HDL lead to protection from atherosclerosis and other diseases[J]. In Dyslipidemia- From Prevention to Treatment (Kelishadi,R., ed), pp. 173–196. Intech.
[10]
Zannis VI, Fotakis  P, Koukos G , HDL biogenesis, remodeling, and catabolism[J]. Handb Exp Pharmacol, 2015, 224: 53–111
Pubmed
[11]
GuX. KozarskyK, KriegerM. Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor[J]. J Biol Chem, 2000, 275(39): 29993–30001.
Pubmed
[12]
Nakamura K, Kennedy  MA, Baldán A , Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein[J]. J Biol Chem, 2004, 279(44): 45980–45989.
Pubmed
[13]
Navab M, Hama  SY, Cooke CJ , Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1[J]. J Lipid Res, 2000, 41(9): 1481–1494.
Pubmed
[14]
Navab M, Hama  SY, Anantharamaiah GM , Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3[J]. J Lipid Res, 2000, 41(9): 1495–1508.
Pubmed
[15]
Nofer JR, Levkau  B, Wolinska I , Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids[J]. J Biol Chem, 2001, 276(37): 34480–34485.
Pubmed
[16]
Okura H, Yamashita  S, Ohama T , HDL/apolipoprotein A-I binds to macrophage-derived progranulin and suppresses its conversion into proinflammatory granulins[J]. J Atheroscler Thromb, 2010, 17(6): 568–577.
Pubmed
[17]
De Nardo D, Labzin  LI, Kono H , High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3[J]. Nat Immunol, 2014, 15(2): 152–160.
Pubmed
[18]
Murphy AJ, Woollard  KJ, Hoang A , High-density lipoprotein reduces the human monocyte inflammatory response[J]. Arterioscler Thromb Vasc Biol, 2008, 28(11): 2071–2077.
Pubmed
[19]
Cockerill GW, Rye  KA, Gamble JR , High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules[J]. Arterioscler Thromb Vasc Biol, 1995, 15(11): 1987–1994.
Pubmed
[20]
Bursill CA, Castro  ML, Beattie DT , High-density lipoproteins suppress chemokines and chemokine receptors in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2010, 30(9): 1773–1778.
Pubmed
[21]
Doggen CJM, Smith  NL, Lemaitre RN , Serum lipid levels and the risk of venous thrombosis[J]. Arterioscler Thromb Vasc Biol, 2004, 24(10): 1970–1975.
Pubmed
[22]
Deguchi H, Pecheniuk  NM, Elias DJ , High-density lipoprotein deficiency and dyslipoproteinemia associated with venous  thrombosis in  men[J].  Circulation,  2005, 112(6): 893–899.
Pubmed
[23]
Rütti S, Ehses  JA, Sibler RA , Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells[J]. Endocrinology, 2009, 150(10): 4521–4530.
Pubmed
[24]
Koseki M, Matsuyama  A, Nakatani K , Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations[J]. J Atheroscler Thromb, 2009, 16(3): 292–296.
Pubmed
[25]
Abderrahmani A, Niederhauser  G, Favre D , Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells[J]. Diabetologia, 2007, 50(6): 1304–1314.
Pubmed
[26]
Seetharam D, Mineo  C, Gormley AK , High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I[J]. Circ Res, 2006, 98(1): 63–72.
Pubmed
[27]
Mineo C, Yuhanna  IS, Quon MJ , High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases[J]. J Biol Chem, 2003, 278(11): 9142–9149.
Pubmed
[28]
Dole VS, Matuskova  J, Vasile E , Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2008, 28(6): 1111–1116.
Pubmed
[29]
Parker TS, Levine  DM, Chang JCC , Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood[J]. Infect Immun, 1995, 63(1): 253–258.
Pubmed
[30]
Vanhollebeke B, Pays  E. The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill[J]. Mol Microbiol, 2010, 76(4): 806–814.
Pubmed
[31]
Singh IP, Chopra  AK, Coppenhaver DH , Lipoproteins account for part of the broad non-specific antiviral activity of human serum[J]. Antiviral Res, 1999, 42(3): 211–218.
Pubmed
[32]
Gordon DJ, Probstfield  JL, Garrison RJ , High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies[J]. Circulation, 1989, 79(1): 8–15.
Pubmed
[33]
Nolte RT, Atkinson  D. Conformational analysis of apolipoprotein A-I and E-3 based on primary sequence and circular dichroism[J]. Biophys J, 1992, 63(5): 1221–1239.
Pubmed
[34]
Segrest JP, Jackson  RL, Morrisett JD , A molecular theory of lipid-protein interactions in the plasma lipoproteins[J]. FEBS Lett, 1974, 38(3): 247–258.
Pubmed
[35]
Borhani DW, Engler  JA, Brouillette CG . Crystallization of truncated human apolipoprotein A-I in a novel conformation[J]. Acta Crystallogr D Biol Crystallogr, 1999, 55(Pt 9): 1578–1583.
Pubmed
[36]
Borhani DW, Rogers  DP, Engler JA , Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation[J]. Proc Natl Acad Sci USA, 1997, 94(23): 12291–12296.
Pubmed
[37]
Segrest JP, Jones  MK, Klon AE , A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein[J]. J Biol Chem, 1999, 274(45): 31755–31758.
Pubmed
[38]
Wu  Z. Gogonea   V, Lee  X , The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering[J]. J Biol Chem, 2011, 286(14): 12495–12508
Pubmed
[39]
Silva RA, Huang  R, Morris J , Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes[J]. Proc Natl Acad Sci USA, 2008, 105(34): 12176–12181.
Pubmed
[40]
Huang R, Silva  RA, Jerome WG , Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma[J]. Nat Struct Mol Biol, 2011, 18(4): 416–422.
Pubmed
[41]
Langmann T, Klucken  J, Reil M , Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages[J]. Biochem Biophys Res Commun, 1999, 257(1): 29–33.
Pubmed
[42]
Kielar D, Dietmaier  W, Langmann T , Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR[J]. Clin Chem, 2001, 47(12): 2089–2097.
Pubmed
[43]
Neufeld EB. Demosky   SJJr, Stonik  JA , The ABCA1 transporter functions on the basolateral surface of hepatocytes[J]. Biochem Biophys Res Commun, 2002, 297(4): 974–979
Pubmed
[44]
Neufeld EB, Remaley  AT, Demosky SJ , Cellular localization and trafficking of the human ABCA1 transporter[J]. J Biol Chem, 2001, 276(29): 27584–27590.
Pubmed
[45]
Wang N, Silver  DL, Costet P , Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1[J]. J Biol Chem, 2000, 275(42): 33053–33058.
Pubmed
[46]
Remaley AT, Stonik  JA, Demosky SJ , Apolipoprotein specificity for lipid efflux by the human ABCAI transporter[J]. Biochem Biophys Res Commun, 2001, 280(3): 818–823.
Pubmed
[47]
Zannis VI, Chroni  A, Kypreos KE , Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer[J]. Curr Opin Lipidol, 2004, 15(2): 151–166.
Pubmed
[48]
Chroni A, Liu  T, Gorshkova I , The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo[J]. J Biol Chem, 2003, 278(9): 6719–6730.
Pubmed
[49]
Chroni A, Liu  T, Fitzgerald ML , Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1[J]. Biochemistry, 2004, 43(7): 2126–2139.
Pubmed
[50]
Bodzioch M, Orsó  E, Klucken J , The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease[J]. Nat Genet, 1999, 22(4): 347–351.
Pubmed
[51]
Fitzgerald ML, Morris  AL, Rhee JS , Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I[J]. J Biol Chem, 2002, 277(36): 33178–33187.
Pubmed
[52]
Fitzgerald ML, Mendez  AJ, Moore KJ , ATP-binding cassette transporter A1 contains an NH2-terminal signal anchor sequence that translocates the protein’s first hydrophilic domain to the exoplasmic space[J]. J Biol Chem, 2001, 276(18): 15137–15145.
Pubmed
[53]
Brunham LR, Singaraja  RR, Hayden MR . Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis[J]. Annu Rev Nutr, 2006, 26: 105–129.
Pubmed
[54]
Orsó E, Broccardo  C, Kaminski WE , Transport of lipids from golgi to plasma membrane is defective in tangier disease patients and Abc1-deficient mice[J]. Nat Genet, 2000, 24(2): 192–196.
Pubmed
[55]
Assmann G, von Eckardstein  A, Brewer HB . (2001) Familial analphalipoproteinemia: Tangier disease[J]. In The Metabolic and Molecular Basis of Inherited Disease (Scriver,C.R., Beaudet,A.L., Sly,W.S., & Valle,D., eds), pp. 2937–2960. McGraw-Hill, New York.
[56]
Timmins JM, Lee  JY, Boudyguina E , Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I[J]. J Clin Invest, 2005, 115(5): 1333–1342.
Pubmed
[57]
Chroni A, Koukos  G, Duka A , The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo[J]. Biochemistry, 2007, 46(19): 5697–5708.
Pubmed
[58]
Brunham LR, Kruit  JK, Iqbal J , Intestinal ABCA1 directly contributes to HDL biogenesis in vivo[J]. J Clin Invest, 2006, 116(4): 1052–1062.
Pubmed
[59]
Reardon CA, Kan  HY, Cabana V , In vivo studies of HDL assembly and metabolism using adenovirus-mediated transfer of ApoA-I mutants in ApoA-I-deficient mice[J]. Biochemistry, 2001, 40(45): 13670–13680.
Pubmed
[60]
Fotakis P, Tiniakou  I, Kateifides AK , Significance of the hydrophobic residues 225-230 of apoA-I for the biogenesis of HDL[J]. J Lipid Res, 2013, 54(12): 3293–3302
Pubmed
[61]
Ohnsorg PM, Rohrer  L, Perisa D , Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells[J]. J Biol Chem, 2011, 286(10): 7744–7754.
Pubmed
[62]
Biedzka-Sarek  M .  Metso  J ,  Kateifides  A , Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3[J]. J Biol Chem, 2011, 286(44): 38211–38219
Pubmed
[63]
Fielding CJ, Shore  VG, Fielding PE . A protein cofactor of lecithin:cholesterol acyltransferase[J]. Biochem Biophys Res Commun, 1972, 46(4): 1493–1498.
Pubmed
[64]
Zannis VI, Chroni  A, Liu T ,  (2004) New insights on the roles of apolipoprotein A-I, the ABCA1 lipid transporter, and the HDL receptor SR-BI in the biogenesis and the functions of HDL[J]. (Simionescu,M., ed), pp. 33–72.
[65]
Subbaiah PV, Albers  JJ, Chen CH , Low density lipoprotein-activated lysolecithin acylation by human plasma lecithin-cholesterol acyltransferase. Identity of lysolecithin acyltransferase and lecithin-cholesterol acyltransferase[J]. J Biol Chem, 1980, 255(19): 9275–9280.
Pubmed
[66]
Jonas A. Lecithin cholesterol acyltransferase[J]. Biochim Biophys Acta, 2000, 1529(1-3): 245–256.
Pubmed
[67]
Chroni A, Duka  A, Kan HY , Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency[J]. Biochemistry, 2005, 44(43): 14353–14366.
Pubmed
[68]
Santamarina-Fojo  S .  Hoeg  JM ,  Assmann  G , (2001) Lecithin cholesterol acyltransferase deficiency and fish eye disease[J]. In The Metabolic & Molecular Bases of Inherited Disease (Scriver,C.R., Beaudet,A.L., Sly,W.S., & Valle,D., eds), pp. 2817–2834. McGraw-Hill, New York.
[69]
Fotakis P, Kuivenhoven  JA, Dafnis E , The Effect of Natural LCAT Mutations on the Biogenesis of HDL[J]. Biochemistry, 2015, 54(21): 3348–3359.
Pubmed
[70]
Sorci-ThomasMG. ThomasMJ. The effects of altered apolipoprotein A-I structure on plasma HDL concentration[J]. Trends Cardiovasc Med, 2002, 12(3): 121–128.
Pubmed
[71]
Koukos G, Chroni  A, Duka A , LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN[J]. Biochemistry, 2007, 46(37): 10713–10721.
Pubmed
[72]
Miettinen HE, Gylling  H, Miettinen TA , Apolipoprotein A-IFin. Dominantly inherited hypoalphalipoproteinemia due to a single base substitution in the apolipoprotein A-I gene[J]. Arterioscler Thromb Vasc Biol, 1997, 17(1): 83–90.
Pubmed
[73]
Leren TP, Bakken  KS, Daum U , Heterozygosity for apolipoprotein A-I(R160L)Oslo is associated with low levels of high density lipoprotein cholesterol and HDL-subclass LpA-I/A-II but normal levels of HDL-subclass LpA-I[J]. J Lipid Res, 1997, 38(1): 121–131.
Pubmed
[74]
Haase CL. Frikke-Schmidt   R, Nordestgaard  BG, Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels[J]. J Intern Med, 2011, 270(2): 136–146
Pubmed
[75]
Koukos G, Chroni  A, Duka A , Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT[J]. Biochem J, 2007, 406(1): 167–174.
Pubmed
[76]
Chroni A, Kan  HY, Shkodrani A , Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice[J]. Biochemistry, 2005, 44(10): 4108–4117.
Pubmed
[77]
Chroni A, Kan  HY, Kypreos KE , Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice[J]. Biochemistry, 2004, 43(32): 10442–10457.
Pubmed
[78]
Kateifides AK, Gorshkova  IN, Duka A , Alteration of negatively charged residues in the 89 to 99 domain of apoA-I affects lipid homeostasis and maturation of HDL[J]. J Lipid Res, 2011, 52(7): 1363–1372.
Pubmed
[79]
Gorshkova IN, Atkinson  D. Enhanced binding of apolipoprotein A-I variants associated with hypertriglyceridemia to triglyceride-rich particles[J]. Biochemistry, 2011, 50(12): 2040–2047.
Pubmed
[80]
Zannis VI, Zanni  EE, Papapanagiotou A ,  (2006) ApoA-I functions and synthesis of HDL: Insights from mouse models of human HDL metabolism[J]. In High-Density Lipoproteins. From Basic Biology to Clinical Aspects pp. 237–265. Wiley-VCH, Weinheim.
[81]
Gursky O. Crystal structure of D(185-243)ApoA-I suggests a mechanistic framework for the protein adaptation to the changing lipid load in good cholesterol: from flatland to sphereland via double belt, belt buckle, double hairpin and trefoil/tetrafoil[J]. J Mol Biol, 2013, 425(1): 1–16
Pubmed
[82]
Mei X, Atkinson  D. Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization[J]. J Biol Chem, 2011, 286(44): 38570–38582.
Pubmed
[83]
Chroni A, Nieland  TJ, Kypreos KE , SR-BI mediates cholesterol efflux via its interactions with lipid-bound ApoE. Structural mutations in SR-BI diminish cholesterol efflux[J]. Biochemistry, 2005, 44(39): 13132–13143.
Pubmed
[84]
Duka A, Fotakis  P, Georgiadou D , ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT[J]. J Lipid Res, 2013, 54(1): 107–115.
Pubmed
[85]
Sundaram M, Yao  Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion[J]. Arterioscler Thromb Vasc Biol, 2012, 32(5): 1073–1078.
Pubmed
[86]
Kypreos KE, Zannis  VI. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT[J]. Biochem J, 2007, 403(2): 359–367.
Pubmed
[87]
Plump AS, Smith  JD, Hayek T , Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells[J]. Cell, 1992, 71(2): 343–353.
Pubmed
[88]
Li  X. Kypreos   K, Zanni  EE , Domains of apoE required for binding to apoE receptor 2 and to phospholipids: implications for the functions of apoE in the brain[J]. Biochemistry, 2003, 42(35): 10406–10417
Pubmed
[89]
Vowinkel T, Mori  M, Krieglstein CF , Apolipoprotein A-IV inhibits experimental colitis[J]. J Clin Invest, 2004, 114(2): 260–269.
Pubmed
[90]
Ostos MA, Conconi  M, Vergnes L , Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2001, 21(6): 1023–1028.
Pubmed
[91]
Duverger N, Tremp  G, Caillaud JM , Protection against atherogenesis in mice mediated by human apolipoprotein A-IV[J]. Science, 1996, 273(5277): 966–968.
Pubmed
[92]
Cohen RD, Castellani  LW, Qiao JH , Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV[J]. J Clin Invest, 1997, 99(8): 1906–1916.
Pubmed
[93]
VerHagueMA. Cheng   D, Weinberg  RB , Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion[J]. Arterioscler Thromb Vasc Biol, 2013, 33(11): 2501–2508
Pubmed
[94]
Weinberg RB, Gallagher  JW, Fabritius MA , ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins[J]. J Lipid Res, 2012, 53(4): 736–743.
Pubmed
[95]
Amar MJ, Shamburek  RD, Vaisman B , Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density  lipoprotein[J].  Metabolism, 2009, 58(4): 568–575.
Pubmed

Acknowledgements:

This work was supported by National Institute of Health Grant HL-48739 and HL-68216.

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research.
PDF(639 KB)

727

Accesses

4

Citations

Detail

Sections
Recommended

/