Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study

Yuan Huang, Peng Quan, Yongwei Wang, Dongsheng Zhang, Mingwan Zhang, Rui Li, Nan Jiang

PDF(463 KB)
PDF(463 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (5) : 395-407. DOI: 10.7555/JBR.31.20160073
Original Article
Original Article

Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study

Author information +
History +

Abstract

Ursolic acid (UA) and oleanolic acid (OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin (β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1 H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.

Keywords

β-cyclodextrin / oleanolic acid / ursolic acid / host-guest interaction / molecular modeling

Cite this article

Download citation ▾
Yuan Huang, Peng Quan, Yongwei Wang, Dongsheng Zhang, Mingwan Zhang, Rui Li, Nan Jiang. Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study. Journal of Biomedical Research, 2017, 31(5): 395‒407 https://doi.org/10.7555/JBR.31.20160073

References

[1]
Gao D, Li  Q, Li Y , Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait[J]. Can J Physiol Pharmacol, 2007, 85(11): 1076–1083.
CrossRef Pubmed Google scholar
[2]
Price KR, Johnson  IT, Fenwick GR , The chemistry and biological significance of saponins in foods and feedingstuffs[J]. Crit Rev Food Sci Nutr, 1987, 26(1): 27–135.
CrossRef Pubmed Google scholar
[3]
Mahato SB, Sarkar  SK, Poddar G . Triterpenoid saponins[J]. Phytochemistry, 1 988, 27(10): 3037–3067.
CrossRef Google scholar
[4]
Dinkova-Kostova AT ,  Liby KT ,  Stephenson KK , Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress[J].  Proc  Natl Acad  Sci  USA, 2005, 102(12):  4584–4589.
CrossRef Pubmed Google scholar
[5]
Savic IM, Nikolic  VD, Savic-Gajic I , Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin[J]. J Incl Phenom Macrocycl Chem, 2015, 82(3–4): 383–394.
CrossRef Google scholar
[6]
Szejtli J. Introduction and general overview of cyclodextrin chemistry[J]. Chem Rev, 1998, 98(5): 1743–1754.
CrossRef Pubmed Google scholar
[7]
Grünstein D, Maglinao  M, Kikkeri R , Hexameric supramolecular scaffold orients carbohydrates to sense bacteria[J]. J Am Chem Soc, 2011, 133(35): 13957–13966.
CrossRef Pubmed Google scholar
[8]
Xue M, Zhong  X, Shaposhnik Z , pH-Operated mechanized porous silicon nanoparticles[J]. J Am Chem Soc, 2011, 133(23): 8798–8801.
CrossRef Pubmed Google scholar
[9]
Wenz G, Han  BH, Müller A . Cyclodextrin rotaxanes and polyrotaxanes[J]. Chem Rev, 2006, 106(3): 782–817.
CrossRef Pubmed Google scholar
[10]
Liu Y, Zhao  YL, Zhang HY , Polymeric rotaxane constructed from the inclusion complex of beta-cyclodextrin and 4,4′-dipyridine by coordination with nickel(II) ions[J]. Angew Chem Int Ed Engl, 2003, 42(28): 3260–3263.
CrossRef Pubmed Google scholar
[11]
Liu L, Guo  QX. The driving forces in the inclusion complexation of cyclodextrins[J]. J Incl Phenom Macrocycl Chem, 2002, 42(1): 1–14.
CrossRef Google scholar
[12]
Venkatesh G, Sivasankar  T, Karthick M , Inclusion complexes of sulphanilamide drugs and β-cyclodextrin: a theoretical approach[J]. J Incl Phenom Macrocycl Chem, 2012, 77(1–4): 309–318.
[13]
Rajendiran N, Mohandoss  T, Venkatesh G . Investigation of inclusion complexes of sulfamerazine with α- and β-cyclodextrins: an experimental and theoretical study[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 124: 441–450.
CrossRef Pubmed Google scholar
[14]
Benesi HA, Hildebrand  JH. A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons[J]. J Am Chem Soc, 1949, 71(8): 2703–2707.
CrossRef Google scholar
[15]
Quan P, Liu  DF, Li R , The effects of water-soluble polymers on hydroxypropyl-β-cyclodextrin solubilization of oleanolic acid and ursolic acid[J]. J Incl Phenom Macrocycl Chem, 2009, 63(1): 181–188.
CrossRef Google scholar
[16]
Claude B, Morin  P, Lafosse M , Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β- and γ-cyclodextrins by reversed phase liquid chromatography[J]. J Chromatogr A, 2004, 1049(1): 37–42.
CrossRef Pubmed Google scholar
[17]
Fan JP, Zhang  RF, Zhang XH , Separation of three triterpene acids in leaves of Diospyros kaki by high perfoamance liquid chromatography using hydroxypropli-β-cyclodexrin as mobile phase modifier[J]. J Liq Chromatogr Relat Technol, 2011, 34(14): 1340–1355.
CrossRef Google scholar
[18]
Higuchi T, Connors  K. Phase-solubility techniques[J]. Adv Anal Chem Instrum, 1965, 4: 117–212.
[19]
Barone V, Cossi  M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J Phys Chem A, 1998, 102(11): 1995–2001.
CrossRef Google scholar
[20]
Cossi M, Rega  N, Scalmani G , Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J Comput Chem, 2003, 24(6): 669–681.
CrossRef Pubmed Google scholar
[21]
VilseckJZ, Kostal J, Tirado-RivesJ , Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions[J]. J Comput Chem, 2015, 36(27): 2064–2074.
[22]
Marder SR, Perry  JJW, Tiemann BG , Direct observation of reduced bond length alternation in donor/acceptor polyenes[J]. J Am Chem Soc, 1993, 115(6): 2524–2526.
CrossRef Google scholar
[23]
Sun H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 36(3): 701–712.
CrossRef Google scholar
[24]
Sun H, Mumby  SJ, Maple JR , Ab initio calculations on small molecule analogues of polycarbonates[J]. J Phys Chem, 1995, 99(16): 5873–5882.
CrossRef Google scholar
[25]
Hwang MJ, Stockfisch  TP, Hagler AT . Derivation of class I1 force fields. 2. Derivation and characterization of a class I1 force field, CFF93, for the alkyl functional group and alkane molecules[J]. J Am Chem Soc, 1994, 116(6): 2515–2525.
CrossRef Google scholar
[26]
Jiang N, Ma  J. Can a proton be encapsulated in tetraamido/diamino quaternized macrocycles in aqueous solution and electric field[J]? A European Journal of Chemical Physics and Physical Chemistry, 2011, 12(13):2453–2460.
[27]
Jiang N, Ma  J. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model[J]. J Phys Chem A, 2008, 112(40): 9854–9867.
CrossRef Pubmed Google scholar
[28]
Jiang N, Ma  J. Influence of disulfide connectivity, electrostatics, and hydrophobicity on the conformational variations of alpha-conotoxin GI single-disulfide analogues: simulations with polarizable force field[J]. J Phys Chem B, 2010, 114(34): 11241–11250.
CrossRef Pubmed Google scholar
[29]
Foster JP, Weinhold  F. Natural hybrid orbitals[J]. J Am Chem Soc, 1980, 102(24): 7211–7218.
CrossRef Google scholar
[30]
Vogt FG, Strohmeier  M. 2D solid-state NMR analysis of inclusion in drug-cyclodextrin complexes[J]. Mol Pharm, 2012, 9(11): 3357–3374.
CrossRef Pubmed Google scholar
[31]
Bani-Yaseen AD, Mo’ala  A. Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in β-cyclodextrin nano-cavity[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 131: 424–431.
CrossRef Pubmed Google scholar
[32]
Junquera E, Aicart  E. Thermodynamic analysis of the binding of a hepatoprotectant drug, thioctic acid, by beta-cyclodextrin[J]. J Pharm Sci, 1999, 88(6): 626–631.
CrossRef Pubmed Google scholar
[33]
Jadhav GS, Vavia  PR. Physicochemical, in silico and in vivo evaluation of a danazol-beta-cyclodextrin complex[J]. Int J Pharm, 2008, 352(1-2): 5–16.
CrossRef Pubmed Google scholar
[34]
Bernad Bernad MJ ,  Gracia-mora J ,  Diaz D, Molecular interactions and thermodynamic aspects of the complexation reaction between gentian violet and several cyclodextrins[J]. J Incl Phenom Macrocycl Chem, 1999, 34(1): 1–18.
CrossRef Google scholar
[35]
Hoshino T, Uekama  K, Pitha J . Increase in temperature enhances solubility of drugs in aqueous solutions of hydroxypropylcyclodextrins[J]. Int  J  Pharm, 1993, 98(1–3): 239–242.
CrossRef Google scholar
[36]
Loukas YL, Vraka  V, Gregoriadis G . Novel non-acidic formulations of haloperidol complexed with β-cyclodextrin derivatives[J]. J  Pharm  Biomed Anal, 1997, 16(2): 263–268.
CrossRef Pubmed Google scholar
[37]
Wiedman TS. Remington’s pharmaceutical sciences[M]. Mack Publishing Company, 18th edition, Pennsylvania,1990: 197–206.
[38]
Zarzycki PK, Lamparczyk  H. The equilibrium constant of β-cyclodextrin-phenolphtalein complex; influence of temperature and tetrahydrofuran addition[J]. J Pharm Biomed Anal, 1998, 18(1-2): 165–170.
CrossRef Pubmed Google scholar
[39]
Yousaf AM, Kim  DW, Cho KH , Effect of the preparation method on crystallinity, particle size, aqueous solubility and dissolution of different samples of the poorly water-soluble fenofibrate with HP-b-CD[J]. J Incl Phenom Macrocycl Chem, 2015, 81(3): 347–356.
CrossRef Google scholar
[40]
Prabu S, Sivakumar  K, Swaminathan M , Preparation and characterization of host-guest system between inosine and β-cyclodextrin through inclusion mode[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 147(2): 151–157.
CrossRef Pubmed Google scholar
[41]
Rajendiran N, Mohandoss  T, Saravanan J . Guest:host interactions of lidocaine and prilocaine with natural cyclodextrins: spectral and molecular modeling studies[J]

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (21303086), the Natural Science Foundation of Jiangsu Province (BK20130884), and the Research Fund for Doctoral Program of Higher Education (20123234120012). We thank the High Performance Computing Center at Shanghai.

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved.
PDF(463 KB)

Accesses

Citations

Detail

Sections
Recommended

/