Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans

Li Cao, Zhen-zhen Zhang, Shuang-bo Xu, Ming Ma, Xin Wei

PDF(337 KB)
PDF(337 KB)
Journal of Biomedical Research ›› 2017, Vol. 31 ›› Issue (4) : 333-343. DOI: 10.7555/JBR.31.20150151
Original Article
Original Article

Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans

Author information +
History +

Abstract

Streptococcus mutans is a primary etiological agent of dental caries. Farnesol, as a potential antimicrobial agent, inhibits the development ofS. mutans biofilm. In this study, we hypothesized that farnesol inhibits caries development in vitro and interferes with biofilm formation by regulating virulence-associated gene expression. The inhibitory effects of farnesol to S. mutans biofilms on enamel surfaces were investigated by determining micro-hardness and calcium measurements. Additionally, the morphological changes ofS. mutans biofilms were compared using field emission scanning electron microscopy and confocal laser scanning microscopy, and the vitality and oxygen sensitivity ofS. mutans biofilms were compared using MTT assays. To investigate the molecular mechanisms of farnesol’s effects, expressions of possible target genesluxS, brpA, ffh, recA, nth, and smx were analyzed using reverse-transcription polymerase chain reaction (PCR) and quantitative PCR. Farnesol-treated groups exhibited significantly higher micro-hardness on the enamel surface and lower calcium concentration of the supernatants as compared to the-untreated control. Microscopy revealed that a thinner film with less extracellular matrix formed in the farnesol-treated groups. As compared to the-untreated control, farnesol inhibited biofilm formation by 26.4% with 500 µmol/L and by 37.1% with 1,000 µmol/L (P<0.05). Last, decreased transcription levels of luxS, brpA, ffh, recA, nth, and smx genes were expressed in farnesol-treated biofilms. In vitrofarnesol inhibits caries development and S. mutans biofilm formation. The regulation of luxS, brpA, ffh, recA, nth, and smx genes may contribute to the inhibitory effects of farnesol.

Keywords

Streptococcus mutans / biofilm / farnesol / caries / virulent genes

Cite this article

Download citation ▾
Li Cao, Zhen-zhen Zhang, Shuang-bo Xu, Ming Ma, Xin Wei. Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans. Journal of Biomedical Research, 2017, 31(4): 333‒343 https://doi.org/10.7555/JBR.31.20150151

References

[1]
Berkowitz RJ. Mutans streptococci: acquisition and transmission[J]. Pediatr Dent, 2006, 28(2): 106–109., discussion 192–198.
Pubmed
[2]
Stewart PS, Franklin  MJ. Physiological heterogeneity in biofilms[J]. Nat Rev Microbiol, 2008, 6(3): 199–210
Pubmed
[3]
Schilling KM, Bowen  WH. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans[J]. Infect Immun, 1992, 60(1): 284–295
Pubmed
[4]
Thurnheer T, Gmür  R, Shapiro S , Mass transport of macromolecules within an in vitro model of supragingival plaque[J]. Appl Environ Microbiol, 2003, 69(3): 1702–1709
Pubmed
[5]
Medeiros JR, Campos  LB, Mendonça SC , Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and  Pittosporum undulatum[J]. Phytochemistry, 2003, 64(2): 561–565
Pubmed
[6]
Koo H, Jeon  JG. Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms[J]. Adv Dent Res, 2009, 21(1): 63–68
Pubmed
[7]
Derengowski LS, De-Souza-Silva  C, Braz SV , Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis[J]. Ann Clin Microbiol Antimicrob, 2009, 8: 13
Pubmed
[8]
Semighini CP, Murray  N, Harris SD . Inhibition of Fusarium graminearum growth and development by farnesol[J]. FEMS Microbiol Lett, 2008, 279(2): 259–264
Pubmed
[9]
Pammi M, Liang  R, Hicks JM , Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin[J].Pediatr Res, 2011, 70(6): 578–583
Pubmed
[10]
Brilhante RS, Valente  LG, Rocha MF , Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei[J]. Antimicrob Agents Chemother, 2012, 56(4): 2198–2200
Pubmed
[11]
Jeon JG, Pandit  S, Xiao J , Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms[J]. Int J Oral Sci, 2011, 3(2): 98–106
Pubmed
[12]
Sztajer H, Lemme  A, Vilchez R , Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation[J]. J Bacteriol, 2008, 190(1): 401–415
Pubmed
[13]
Wen ZT, Baker  HV, Burne RA . Influence of BrpA on critical virulence attributes of Streptococcus mutans[J]. J Bacteriol, 2006, 188(8): 2983–2992
Pubmed
[14]
Gutierrez JA, Crowley  PJ, Cvitkovitch DG , Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress[J]. Microbiology, 1999, 145(Pt 2): 357–366
Pubmed
[15]
Inagaki S, Fujita  K, Takashima Y , Regulation of recombination between gtfB/gtfC genes in Streptococcus mutans by recombinase A[J]. ScientificWorldJournal, 2013, 2013: 405075
Pubmed
[16]
Wen ZT, Burne  RA. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation[J]. J Bacteriol, 2004, 186(9): 2682–2691
Pubmed
[17]
Faustoferri RC, Hahn  K, Weiss K , Smx nuclease is the major, low-pH-inducible apurinic/apyrimidinic endonuclease in Streptococcus mutans[J]. J Bacteriol, 2005, 187(8): 2705–2714
Pubmed
[18]
Wen ZT, Nguyen  AH, Bitoun JP , Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms[J]. Mol Oral Microbiol, 2011, 26(1): 2–18
Pubmed
[19]
Ajdić D, McShan  WM, McLaughlin RE , Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14434–14439
Pubmed
[20]
Hornby JM, Jensen  EC, Lisec AD , Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Appl Environ Microbiol, 2001, 67(7): 2982–2992
Pubmed
[21]
Jeon JG, Klein  MI, Xiao J , Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms[J]. BMC Microbiol, 2009, 9: 228
Pubmed
[22]
Burwell AK, Thula-Mata  T, Gower LB , Functional remineralization of dentin lesions using polymer-induced liquid-precursor process[J]. PLoS One, 2012, 7(6): e38852
Pubmed
[23]
Featherstone JD, ten Cate  JM, Shariati M , Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles[J]. Caries Res, 1983, 17(5): 385–391
Pubmed
[24]
Shetty S, Hegde  MN, Bopanna TP . Enamel remineralization assessment after treatment with three different remineralizing agents using surface microhardness: An in vitro study[J]. J Conserv Dent, 2014, 17(1): 49–52
Pubmed
[25]
Vaessen HA, van de Kamp  CG. Reference-material-based collaborative test of flame atomic absorption spectroscopic determination of calcium and magnesium in foods and biological materials[J]. Z Lebensm Unters Forsch, 1990, 190(3): 199–204
Pubmed
[26]
Tong Z, Tao  R, Jiang W , In vitro study of the properties of Streptococcus mutans in starvation conditions[J]. Arch Oral Biol, 2011, 56(11): 1306–1311
Pubmed
[27]
He Z, Wang  Q, Hu Y , Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain[J]. Int J Antimicrob Agents, 2012, 40(1): 30–35
Pubmed
[28]
Shiroza T, Kuramitsu  HK. Construction of a model secretion system for oral streptococci[J]. Infect Immun, 1993, 61(9): 3745–3755
Pubmed
[29]
Fujiwara T, Hoshino  T, Ooshima T , Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148[J]. J Dent Res, 2002, 81(2): 109–113
Pubmed
[30]
Marsh PD. Controlling the oral biofilm with antimicrobials[J]. J Dent, 2010, 38(Suppl 1): S11–S15
Pubmed
[31]
Jeon JG, Rosalen  PL, Falsetta ML , Natural products in caries research: current (limited) knowledge, challenges and future perspective[J]. Caries Res, 2011, 45(3): 243–263
Pubmed
[32]
Koo H, Rosalen  PL, Cury JA , Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity[J]. Antimicrob Agents Chemother, 2002, 46(5): 1302–1309
Pubmed
[33]
Jabbarifar SE, Salavati  S, Akhavan A , Effect of fluoridated dentifrices on surface microhardness of the enamel of deciduous  teeth[J].  Dent  Res  J  (Isfahan),  2011, 8(3): 113–117
Pubmed
[34]
Meredith N, Sherriff  M, Setchell DJ , Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique[J]. Arch Oral Biol, 1996, 41(6): 539–545
Pubmed
[35]
Bowen WH, Koo  H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011, 45(1): 69–86
Pubmed
[36]
Fozo EM, Quivey  RG Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments[J]. Appl Environ Microbiol, 2004, 70(2): 929–936
Pubmed
[37]
Bitoun JP, Liao  S, Yao X , BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans[J]. Appl Environ Microbiol, 2012, 78(8): 2914–2922
Pubmed
[38]
Huang Z, Meric  G, Liu Z , luxS-based quorum-sensing signaling affects Biofilm formation in Streptococcus mutans[J]. J Mol Microbiol Biotechnol, 2009, 17(1): 12–19
Pubmed

Acknowledgments:

National Natural Sciences Foundation of China (Grant No. 81271151 and Grant No. 81371156). Jiangsu Qinglan Project Foundation (2012). The Foundation of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2014-37).

RIGHTS & PERMISSIONS

2017 2017 by the Journal of Biomedical Research. All rights reserved.
PDF(337 KB)

Accesses

Citations

Detail

Sections
Recommended

/