Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites
Yu Li, Shanshan Yu, Junjie Yang, Kai Zhang, Mingyu Hu, Weitao Qiu, Fumin Guo, Wei Qian, Sean Reinecke, Tao Chen, Makhsud I. Saidaminov, Jian Wang, Shihe Yang
Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites
Narrowband photodetectors conventionally rely on optical structure design or bandpass filters to achieve the narrowband regime. Recently, a strategy for filterless narrowband photoresponse based on the charge collection narrowing (CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy for constructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). By manipulating the ion migration with external stimuli such as illumination, temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response. Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drift technique, we discover two critical mechanisms behind our BMN strategy: the extension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transport layer. Our findings offer a case for harnessing the often-annoying ion migration for developing advanced narrowband PPDs.
band structure / ion migration / narrowband detection / perovskite / spatial distribution of charge carriers
[1] |
Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors. Lab Chip. 2007;7(8):955-977.
|
[2] |
Higashi Y, Kim KS, Jeon HG, Ichikawa M. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system. J Appl Phys. 2010;108(3):034502.
|
[3] |
Cao F, Chen J, Yu D, et al. Bionic detectors based on low-bandgap inorganic perovskite for selective NIR-I photon detection and imaging. Adv Mater. 2020;32(6):e1905362.
|
[4] |
Li LL, Deng YH, et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv Opt Mater. 2017;5(22):1700672.
|
[5] |
Sobhani A, Knight MW, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun. 2013;4(1):1643.
|
[6] |
Cicek E, McClintock R, Cho CY, Rahnema B, Razeghi M. AlxGa1-xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate. Appl Phys Lett. 2013;103(18):181113.
|
[7] |
Wang X, Liu K, Chen X, et al. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl Mat Interfaces. 2017;9(6):5574-5579.
|
[8] |
Fang YJ, Dong QF, Shao YC, Yuan YB, Huang JS. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photonics. 2015;9(10):679-686.
|
[9] |
Wang J, Xiao S, Qian W, et al. Self-driven perovskite narrowband photodetectors with tunable spectral responses. Adv Mater. 2021;33(3):e2005557.
|
[10] |
Lin Q, Armin A, Burn PL, Meredith P. Filterless narrowband visible photodetectors. Nat Photonics. 2015;9(10):687-694.
|
[11] |
Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale. 2016;8(26):12990-12997.
|
[12] |
Park H, Dan Y, Seo K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014;14(4):1804-1809.
|
[13] |
Li J, Wang J, Ma J, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat Commun. 2019;10(1):806.
|
[14] |
Liu GY, Wu Y, et al. Halide ion migration in lead-free all-inorganic cesium tin perovskites. Appl Phys Lett. 2021;119(3):031902.
|
[15] |
Xiao Z, Yuan Y, Shao Y, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater. 2015;14(2):193-198.
|
[16] |
Chen QL, Zhang Y, et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv Intell Syst Comput. 2020;2(9):2000122.
|
[17] |
deQuilettes DW, Zhang W, Burlakov VM, et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nat Commun. 2016;7(1):11683.
|
[18] |
Chen YCA, Zhou WC, et al. In situ management of ions migration to control hysteresis effect for planar heterojunction perovskite solar cells. Adv Funct Mater. 2022;32(1):2108417.
|
[19] |
Zhang T, Chen HN, et al. Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: a fresh perspective from halide substitution. Nano Energy. 2016;26:620-630.
|
[20] |
Liu J, Hu MY, et al. Correlations between electrochemical ion migration and anomalous device behaviors in perovskite solar cells. ACS Energy Lett. 2021;6(3):1003-1014.
|
[21] |
Zhao Y, Zhou W, Han Z, Yu D, Zhao Q. Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Phys Chem Chem Phys. 2021;23(1):94-106.
|
[22] |
Zhu W, Wang S, Zhang X, Wang A, Wu C, Hao F. Ion migration in organic-inorganic hybrid perovskite solar cells: current understanding and perspectives. Small. 2022;18(15):e2105783.
|
[23] |
Li B, Lin M, Kan C, et al. Revealing the correlation of light soaking effect with ion migration in perovskite solar cells. Sol RRL. 2022;6(7):2200050.
|
[24] |
Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B. Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells. Adv Energy Mater. 2015;5(14):1500279.
|
[25] |
Yen MC, Lee CJ, Liu KH, et al. All-inorganic perovskite quantum dot light-emitting memories. Nat Commun. 2021;12(1):4460.
|
[26] |
Eames C, Frost JM, Barnes PRF, O'Regan BC, Walsh A, Islam MS. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 2015;6(1):7497.
|
[27] |
Tress W, Marinova N, Moehl T, Zakeeruddin SM, Nazeeruddin MK, Grätzel M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energ Environ Sci. 2015;8(3):995-1004.
|
[28] |
Li C, Tscheuschner S, Paulus F, et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv Mater. 2016;28(12):2446-2454.
|
[29] |
Xu X, Qian W, Wang J, et al. Sequential growth of 2D/3D double-layer perovskite films with superior x-ray detection performance. Adv Sci. 2021;8(21):e2102730.
|
[30] |
Qian W, Xu XW, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion x-ray detectors. Matter. 2021;4(3):942-954.
|
[31] |
Wang J, Xu XW, et al. Self-driven perovskite dual-band photodetectors enabled by a charge separation reversion mechanism. Adv Opt Mater. 2021;9(17):2100517.
|
[32] |
Liu Y, Yang Z, Cui D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv Mater. 2015;27(35):5176-5183.
|
[33] |
Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J Mater Sci. 2002;37(17):3585-3587.
|
[34] |
Gan ZX, Wen XM, et al. The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion? Adv Energy Mater. 2019;9(20):1900185.
|
[35] |
Meng X, Ho CHY, Xiao S, et al. Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy. 2018;52:300-306.
|
[36] |
Yu SS, Li Y, et al. Ion migration as a new paradigm to boost self-driven perovskite narrowband photodetectors. Adv Opt Mater. 2023;11(16):2300302.
|
[37] |
Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G. Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J Phys Chem Lett. 2015;6(9):1645-1652.
|
[38] |
Luo DY, Zou TY, et al. Low-dimensional contact layers for enhanced perovskite photodiodes. Adv Funct Mater. 2020;30(24):2001692.
|
[39] |
Byeon J, Kim J, Kim JY, et al. Charge transport layer-dependent electronic band bending in perovskite solar cells and its correlation to light-induced device degradation. ACS Energy Lett. 2020;5(8):2580-2589.
|
[40] |
Nandal V, Nair PR. Predictive modeling of ion migration induced degradation in perovskite solar cells. ACS Nano. 2017;11(11):11505-11512.
|
[41] |
Jacobs DA, Shen H, Pfeffer F, et al. The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. J Appl Phys. 2018;124(22):225702.
|
[42] |
Yang Z, Dou JJ, Wang MQ. Interface engineering in n-i-p metal halide perovskite solar cells. Sol RRL. 2018;2(12):1800177.
|
[43] |
Kim HS, Park NG. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J Phys Chem Lett. 2014;5(17):2927-2934.
|
[44] |
McGovern L, Futscher MH, Muscarella LA, Ehrler B. Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J Phys Chem Lett. 2020;11(17):7127-7132.
|
[45] |
Futscher MH, Lee JM, McGovern L, et al. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater Horizons. 2019;6(7):1497-1503.
|
[46] |
Reichert S, Flemming J, An Q, Vaynzof Y, Pietschmann JF, Deibel C. Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells. Phys Rev Appl. 2020;13(3):034018.
|
[47] |
Futscher MH, Gangishetty MK, Congreve DN, Ehrler B. Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: frequency vs time domain. J Chem Phys. 2020;152(4):044202.
|
[48] |
Bai Y, Chen H, Xiao S, et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv Funct Mater. 2016;26(17):2950-2958.
|
[49] |
Xue Q, Bai Y, Liu M, et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor. Adv Energy Mater. 2017;7(9):1602333.
|
[50] |
Xu J, Buin A, Ip AH, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun. 2015;6(1):7081.
|
[51] |
Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy. 2017;2:17102.
|
[52] |
McGovern L, Koschany I, Grimaldi G, Muscarella LA, Ehrler B. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. J Phys Chem Lett. 2021;12(9):2423-2428.
|
[53] |
Egger DA, Kronik L, Rappe AM. Theory of hydrogen migration in organic-inorganic halide perovskites. Angew Chem Int Ed. 2015;54(42):12437-12441.
|
[54] |
Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energ Environ Sci. 2015;8(7):2118-2127.
|
[55] |
Jong UG, Yu CJ, Ri GC, et al. Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. J Mater Chem A. 2018;6(3):1067-1074.
|
[56] |
Li C, Guerrero A, Huettner S, Bisquert J. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat Commun. 2018;9(1):5113.
|
[57] |
Senocrate A, Moudrakovski I, Kim GY, et al. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew Chem Int Ed. 2017;56(27):7755-7759.
|
[58] |
Senocrate A, Moudrakovski I, Acartürk T, et al. Slow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusion. J Phys Chem C. 2018;122(38):21803-21806.
|
[59] |
McGovern L, Grimaldi G, Futscher MH, et al. Reduced barrier for ion migration in mixed-halide perovskites. ACS Appl Energy Mater. 2021;4(12):13431-13437.
|
[60] |
Miao JL, Zhang FJ. Recent progress on highly sensitive perovskite photodetectors. J Mater Chem C. 2019;7(7):1741-1791.
|
[61] |
Nelson J. The Physics of Solar Cells. London: Imperial College Press; 2003. pp. 166-171.
|
[62] |
Pazos-Outon LM, Szumilo M, et al. Photon recycling in lead iodide perovskite solar cells. Science. 2016;351(6280):1430-1433.
|
[63] |
Li N, Jia Y, Guo Y, Zhao N. Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv Mater. 2022;34(19):e2108102.
|
[64] |
Zhang T, Hu C, Yang S. Ion migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods. 2019;4(5):1900552.
|
[65] |
Mao W, Hall CR, Bernardi S, et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat Mater. 2021;20(1):55-61.
|
[66] |
Ouyang Y, Jiang XX, et al. Light-soaking induced optical tuning in rare earth-doped all-inorganic perovskite. Adv Funct Mater. 2022;32(2):2107086.
|
[67] |
Zhao Y, Zhou W, et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light Sci Appl. 2017;6(5):e16243.
|
[68] |
Yang C, Hu Z, Gao C, et al. Elimination of light-soaking effect in hysteresis-free perovskite solar cells by interfacial modification. J Phys Chem C. 2019;124(3):1851-1860.
|
[69] |
Watts CL, Aspitarte L, Lin YH, et al. Light soaking in metal halide perovskites studied via steady-state microwave conductivity. Commun Phys. 2020;3(1):73.
|
[70] |
Hoque MN, Islam N, et al. Ionic and optical properties of methylammonium lead iodide perovskite across the tetragonal-cubic structural phase transition. ChemSusChem. 2016;9(18):2692-2698.
|
[71] |
Moot T, Patel JB, McAndrews G, et al. Temperature coefficients of perovskite photovoltaics for energy yield calculations. ACS Energy Lett. 2021;6(5):2038-2047.
|
[72] |
Filip MR, Eperon GE, Snaith HJ, Giustino F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat Commun. 2014;5(1):5757.
|
[73] |
Ma H, Wang W, Xu H, et al. Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. ACS Appl Mater Interfaces. 2018;10(25):21755-21763.
|
[74] |
Bai S, Da P, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature. 2019;571(7764):245-250.
|
[75] |
Pan D, Fu Y, Chen J, Czech KJ, Wright JC, Jin S. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 2018;18(3):1807-1813.
|
[76] |
Guo L, Sun H, Wang M, et al. A single-dot perovskite spectrometer. Adv Mater. 2022;34(33):2200221.
|
[77] |
Xu X, Han Z, Zou Y, et al. Miniaturized multispectral detector derived from gradient response units on single MAPbX3 microwire. Adv Mater. 2022;34(9):2108408.
|
[78] |
Sun H, Tian W, Wang X, Deng K, Xiong J, Li L. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv Mater. 2020;32(14):1908108.
|
[79] |
Wang M, Gao W, Cao F, Li L. Ethylamine iodide additive enables solid-to-solid transformed highly oriented perovskite for excellent photodetectors. Adv Mater. 2022;34(8):e2108569.
|
/
〈 | 〉 |