Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures

Haiyang Pan, Anil Kumar Singh, Chusheng Zhang, Xueqi Hu, Jiayu Shi, Liheng An, Naizhou Wang, Ruihuan Duan, Zheng Liu, Stuart S. P. Parkin, Pritam Deb, Weibo Gao

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (6) : e12504. DOI: 10.1002/inf2.12504
RESEARCH ARTICLE

Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures

Author information +
History +

Abstract

The exceptional properties of two-dimensional (2D) magnet materials present a novel approach to fabricate functional magnetic tunnel junctions (MTJ) by constructing full van der Waals (vdW) heterostructures with atomically sharp and clean interfaces. The exploration of vdW MTJ devices with high working temperature and adjustable functionalities holds great potential for advancing the application of 2D materials in magnetic sensing and data storage. Here, we report the observation of highly tunable room-temperature tunneling magnetoresistance through electronic means in a full vdW Fe3GaTe2/WSe2/Fe3GaTe2 MTJ. The spin valve effect of the MTJ can be detected even with the current below 1 nA, both at low and room temperatures, yielding a tunneling magnetoresistance (TMR) of 340% at 2 K and 50% at 300 K, respectively. Importantly, the magnitude and sign of TMR can be modulated by a DC bias current, even at room temperature, a capability that was previously unrealized in full vdW MTJs. This tunable TMR arises from the contribution of energy-dependent localized spin states in the metallic ferromagnet Fe3GaTe2 during tunnel transport when a finite electrical bias is applied. Our work offers a new perspective for designing and exploring room-temperature tunable spintronic devices based on vdW magnet heterostructures.

Keywords

Fe3GaTe2 / magnetic tunnel junction / room temperature / tunneling magnetoresistance / van der Waals heterostructure

Cite this article

Download citation ▾
Haiyang Pan, Anil Kumar Singh, Chusheng Zhang, Xueqi Hu, Jiayu Shi, Liheng An, Naizhou Wang, Ruihuan Duan, Zheng Liu, Stuart S. P. Parkin, Pritam Deb, Weibo Gao. Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures. InfoMat, 2024, 6(6): e12504 https://doi.org/10.1002/inf2.12504

References

[1]
Molas G, Nowak E. Advances in emerging memory technologies: from data storage to artificial intelligence. Appl Sci. 2021;11(23):11254.
[2]
Ou Q-F, Xiong B-S, Yu L, Wen J, Wang L, Tong Y. In-memory logic operations and neuromorphic computing in non-volatile random access memory. Materials. 2020;13(16):3532.
[3]
Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam SN. Spintronics based random access memory: a review. Mater Today. 2017;20(9):530-548.
[4]
Lin X, Yang W, Wang KL, Zhao W. Two-dimensional spintronics for low-power electronics. Nat Electron. 2019;2(7):274-283.
[5]
Chen A, Zhao Y, Wen Y, Pan L, Li P, Zhang X-X. Full voltage manipulation of the resistance of a magnetic tunnel junction. Sci Adv. 2019;5(12):eaay5141.
[6]
Kong T, Stolze K, Timmons EI, et al. VI3—a new layered ferromagnetic semiconductor. Adv Mater. 2019;31(17):1808074.
[7]
Kim M, Kumaravadivel P, Birkbeck J, et al. Micromagnetometry of two-dimensional ferromagnets. Nat Electron. 2019;2(10):457-463.
[8]
Chen W, Sun Z, Wang Z, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science. 2019;366(6468):983-987.
[9]
Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater. 2018;17(9):778-782.
[10]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563(7729):94-99.
[11]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546(7657):270-273.
[12]
Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546(7657):265-269.
[13]
Wei D. The room temperature ferromagnetism in highly strained two-dimensional magnetic semiconductors. J Semicond. 2023;44(4):040401.
[14]
Zhang X, Peng B. The twisted two-dimensional ferroelectrics. J Semicond. 2023;44(1):011002.
[15]
Yang H, Valenzuela SO, Chshiev M, et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature. 2022;606(7915):663-673.
[16]
Min K-H, Lee DH, Choi S-J, et al. Tunable spin injection and detection across a van der Waals interface. Nat Mater. 2022;21(10):1144-1149.
[17]
Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo AF. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18(7):4303-4308.
[18]
Zhu W, Lin H, Yan F, et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv Mater. 2021;33(51):2104658.
[19]
Lin H, Yan F, Hu C, et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals Heterostructures. ACS Appl Mater Interfaces. 2020;12(39):43921-43926.
[20]
Zhou L, Huang J, Tang M, et al. Gate-tunable spin valve effect in Fe3GeTe2-based van der Waals heterostructures. InfoMat. 2023;5(3):e12371.
[21]
Zheng Y, Ma X, Yan F, et al. Spin filtering effect in all-van der Waals heterostructures with WSe2 barriers. npj 2D Mater Appl. 2022;6(1):62.
[22]
Zhang G, Guo F, Wu H, et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat Commun. 2022;13(1):5067.
[23]
Zhu W, Xie S, Lin H, et al. Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Chin Phys Lett. 2022;39(12):128501.
[24]
Li X, Zhu M, Wang Y, et al. Tremendous tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2 with highly spin-polarized Fermi surfaces. Appl Phys Lett. 2023;122(8):082404.
[25]
Pan H, Zhang C, Shi J, et al. Room-temperature lateral spin valve in graphene/Fe3GaTe2 van der Waals heterostructures. ACS Mater Lett. 2023;5(8):2226-2232.
[26]
Yin H, Zhang P, Jin W, et al. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CrystEngComm. 2023;25(9):1339-1346.
[27]
Jin W, Zhang G, Wu H, Yang L, Zhang W, Chang H. Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale. 2023;15(11):5371-5378.
[28]
Jin W, Zhang G, Wu H, Yang L, Zhang W, Chang H. Room-temperature and tunable tunneling magnetoresistance in Fe3GaTe2-based 2D van der Waals heterojunctions. ACS Appl Mater Interfaces. 2023;15(30):36519-36526.
[29]
Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323-410.
[30]
Miao G-X, Münzenberg M, Moodera JS. Tunneling path toward spintronics. Rep Prog Phys. 2011;74(3):036501.
[31]
Julliere M. Tunneling between ferromagnetic films. Phys Lett A. 1975;54(3):225-226.
[32]
Evans RFL, Atxitia U, Chantrell RW. Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets. Phys Rev B. 2015;91(14):144425.
[33]
Shang CH, Nowak J, Jansen R, Moodera JS. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys Rev B. 1998;58(6):R2917-R2920.
[34]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):B864-B871.
[35]
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133-A1138.
[36]
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27(15):1787-1799.
[37]
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.
[38]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758-1775.
[39]
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.
[40]
Tkatchenko A, Scheffler M. Accurate molecular van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 2009;102(7):073005.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/