Populus cathayana genome and population resequencing provide insights into its evolution and adaptation

Xiaodong Xiang, Xinglu Zhou, Hailing Zi, Hantian Wei, Demei Cao, Yahong Zhang, Lei Zhang, Jianjun Hu

Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 255.

PDF
Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 255. DOI: 10.1093/hr/uhad255
ARTICLES

Populus cathayana genome and population resequencing provide insights into its evolution and adaptation

Author information +
History +

Abstract

Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.

Cite this article

Download citation ▾
Xiaodong Xiang, Xinglu Zhou, Hailing Zi, Hantian Wei, Demei Cao, Yahong Zhang, Lei Zhang, Jianjun Hu. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. Horticulture Research, 2024, 11(1): 255 https://doi.org/10.1093/hr/uhad255

References

[1.]
Eckenwalder JE. Systematics and evolution of Populus. In: Stet-tler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds). Biology of Populus and its Implications for Management and Conservation. Ottawa: NRC Research Press, 1996, 7-32
[2.]
Chen K, Peng Y, Wang Y. et al. Genetic relationships among poplar species in section Tacamahaca (Populus L.) from western Sichuan, China. Plant Sci. 2007;172:196-203
[3.]
Weisgerber H, Zhang Z. Populus cathayana Rehder, 1931. Encyclo-pedia of Woody Plants 41. Nicol, Hamburg, 2005.
[4.]
Li KY, Huang MR, Yang ZX. et al. Genetic differentiation of Populus cathayana. Acta Bot Sin. 1997;39:753-8
[5.]
He Y, Zhu Z, Guo Q. et al. Sex-specific interactions affect foliar defense compound accumulation and resistance to herbivores in Populus cathayana. Sci Total Environ. 2021;774:145819
[6.]
Lu Z, Wang Y, Peng Y. et al. Genetic diversity of Populus cathayana Rehd populations in southwestern China revealed by ISSR markers. Plant Sci. 2006;170:407-12
[7.]
Whitlock MC, Lotterhos KE. Reliable detection of loci responsi-ble for local adaptation: inference of a null model through trim-ming the distribution of FST. Am Nat. 2015;186Suppl 1:S24-36
[8.]
Sang Y, Long Z, Dan X. et al. Genomic insights into local adap-tation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat Commun. 2022;13:6541
[9.]
Jia H, Liu G, Li J. et al. Genome resequencing reveals demo-graphic history and genetic architecture of seed salinity toler-ance in Populus euphratica. JExp Bot. 2020;71:4308-20
[10.]
Wang J, Street NR, Park EJ. et al. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol. 2020;29:1120-36
[11.]
Li Y, Cao K, Li N. et al. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Res. 2021;31:592-606
[12.]
Hall D, Luquez V, Garcia VM. et al. Adaptive population differen-tiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral mark-ers, candidate genes and phenotypic traits. Evolution. 2007;61: 2849-60
[13.]
Capblancq T, Fitzpatrick MC, Bay RA. et al. Genomic prediction of (mal)adaptation across current and future climatic land-scapes. Annu Rev Ecol Evol Syst. 2020;51:245-69
[14.]
Evans LM, Slavov GT, Rodgers-Melnick E. et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014;46:1089-96
[15.]
Liu YJ, Wang XR, Zeng QY. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China. Sci China Life Sci. 2019;62: 609-18
[16.]
Qiu D, Bai S, Ma J. et al. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Res. 2019;26:423-31
[17.]
Hofmeister BT, Denkena J, Colome-Tatche M. et al. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol. 2020;21:259
[18.]
Zhang Z, Chen Y, Zhang J. et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica). Mol Ecol Resour. 2020;20:781-94
[19.]
Blanquart F, Kaltz O, Nuismer SL. et al. A practical guide to measuring local adaptation. Ecol Lett. 2013;16:1195-205
[20.]
Borrell JS, Zohren J, Nichols RA. et al. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evol Appl. 2020;13:161-75
[21.]
Geng Y, Guan Y, Qiong L. et al. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biol. 2021;19:143
[22.]
Gugger PF, Fitz-Gibbon ST, Albarran-Lara A. et al. Landscape genomics of Quercus lobata reveals genes involved in local cli-mate adaptation at multiple spatial scales. Mol Ecol. 2021;30: 406-23
[23.]
Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol. 2010;188:501-14
[24.]
Zhang M, Suren H, Holliday JA. Phenotypic and genomic local adaptation across latitude and altitude in Populus trichocarpa. Genome Biol Evol. 2019;11:2256-72
[25.]
Abhilash PC, Tripathi V, Dubey RK. et al. Coping with changes: adaptation of trees in a changing environment. Trends Plant Sci. 2015;20:137-8
[26.]
Rellstab C, Zoller S, Walthert L. et al. Signatures of local adap-tation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol Ecol. 2016;25: 5907-24
[27.]
Vanneste K, Maere S, Van de Peer Y. Tangled up in two: a burst of genome duplications at the end of the cretaceous and the consequences for plant evolution. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130353
[28.]
Yang FS, Nie S, Liu H. et al. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun. 2020;11:5269
[29.]
Yang S, Zhang X, Yue JX. et al. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics. 2008;280:187-98
[30.]
Hou J, Ye N, Dong Z. et al. Major chromosomal rearrangements distinguish willow and poplar after the ancestral "salicoid" genome duplication. Genome Biol Evol. 2016;8:1868-75
[31.]
Cao DM, Zhang YH, Cheng XQ. et al. Genetic variation of leaf phenotypic traits in different populations of Populus cathayana. Scientia Silvae Sinicae. 2021;57:56-7.
[32.]
Wang M, Zhang L, Zhang Z. et al. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. New Phytol. 2020;225:1370-82
[33.]
Murray KD, Janes JK, Jones A. et al. Landscape drivers of genomic diversity and divergence in woodland Eucalyptus. Mol Ecol. 2019;28:5232-47
[34.]
Shen Y, Xia H, Tu Z. et al. Genetic divergence and local adapta-tion of Liriodendron driven by heterogeneous environments. Mol Ecol. 2022;31:916-33
[35.]
Wu S, Wang Y, Wang Z. et al. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet plateau. New Phytol. 2022;234:392-404
[36.]
Fahrenkrog AM, Neves LG, Resende MFR Jr. et al. Population genomics of the eastern cottonwood (Populus deltoides). Ecol Evol. 2017;7:9426-40
[37.]
Li A, Hou Z. Phylogeographic analyses of poplar revealed poten-tial glacial refugia and allopatric divergence in Southwest China. Mitochondrial DNA A DNA Mapp Seq Anal. 2021;32:66-72
[38.]
Hou Z, Li A. Population genomics reveals demographic history and genomic differentiation of Populus davidiana and Populus tremula. Front Plant Sci. 2020;11:1103
[39.]
Shen L, Chen XY, Zhang X. et al. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity. 2005;94:396-401
[40.]
Xu XX, Cheng FY, Peng LP. et al. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling-Daba Mountains, a major glacial refugium in Central China. Ecol Evol. 2019;9:7528-48
[41.]
Richards TJ, Karacic A, Apuli RP. et al. Quantitative genetic architecture of adaptive phenology traits in the deciduous tree, Populus trichocarpa (Torr. and Gray). Heredity (Edinb). 2020;125: 449-58
[42.]
Numaguchi K, Akagi T, Kitamura Y. et al. Interspecific intro-gression and natural selection in the evolution of Japanese apricot (Prunus mume). Plant J. 2020;104:1551-67
[43.]
Fan L, Zheng H, Milne RI. et al. Strong population bot-tleneck and repeated demographic expansions of Populus adenopoda (Salicaceae) in subtropical China. Ann Bot. 2018;121: 665-79
[44.]
Guo Y-P, Zhang R, Chen C-Y. et al. Allopatric divergence and regional range expansion of Juniperus sabina in China. J Syst Evol. 2010;48:153-60
[45.]
Wanderley AM, Machado ICS, et al. The roles of geography and environment in divergence within and between two closely related plant species inhabiting an island-like habi-tat. JBiogeogr. 2018;45:381-93
[46.]
Evans SN, Hening A, Schreiber SJ. Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. JMathBiol. 2015;71:325-59
[47.]
Willi Y, Fracassetti M, Bachmann O. et al. Demographic pro-cesses linked to genetic diversity and positive selection across a species’ range. Plant Commun. 2020;1:100111.
[48.]
DeSilva R, Dodd RS. Association of genetic and climatic vari-ability in giant sequoia, Sequoiadendron giganteum, reveals sig-natures of local adaptation along moisture-related gradients. Ecol Evol. 2020;10:10619-32
[49.]
Capblancq T, Morin X, Gueguen M. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J Evol Biol. 2020;33:783-96
[50.]
Lobreaux S, Miquel C. Identification of Arabis alpina genomic regions associated with climatic variables along an eleva-tion gradient through whole genome scan. Genomics. 2020;112: 729-35
[51.]
Nawkar GM, Kang CH, Maibam P. et al. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA. 2017;114:2084-9
[52.]
Kim S, Hwang G, Lee S. et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Front Plant Sci. 2017;8:1787.
[53.]
Huang X, Ouyang X, Yang P. et al. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc Natl Acad Sci USA. 2013;110:16669-74
[54.]
Yu C, Hou L, Huang Y. et al. The multi-BRCT domain protein DDRM2 promotes the recruitment of RAD51 to DNA dam-age sites to facilitate homologous recombination. New Phytol. 2023;238:1073-84
[55.]
Lovdal T, Olsen KM, Slimestad R. et al. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry. 2010;71:605-13
[56.]
SongY, FengJ, LiuD. et al. Different phenylalanine pathway responses to cold stress based on metabolomics and tran-scriptomics in Tartary buckwheat landraces. J Agric Food Chem. 2022;70:687-98
[57.]
Weber M, Beyene B, Nagler N. et al. A mutation in the essen-tial and widely conserved DAMAGED DNA BINDING1-Cullin 4 ASSOCIATED FACTOR gene OZS3 causes hypersensitivity to zinc excess, cold and UV stress in Arabidopsis thaliana. Plant J. 2020;103:995-1009
[58.]
Liang T, Yang Y, Liu H. Signal transduction mediated by the plant UV-B photoreceptor UVR8. New Phytol. 2019;221: 1247-52
[59.]
Belton JM, McCord RP, Gibcus JH. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268-76
[60.]
Walker BJ, Abeel T, Shea T. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
[61.]
Rao SS, Huntley MH, Durand NC. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665-80
[62.]
Servant N, Varoquaux N, Lajoie BR. et al. HiC-pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259
[63.]
Burton JN, Adey A, Patwardhan RP. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31:1119-25
[64.]
Boetzer M, Henkel CV, Jansen HJ. et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578-9
[65.]
Flynn JM, Hubley R, Goubert C. et al. RepeatModeler2 for auto-mated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117:9451-7
[66.]
Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 2002;12: 1269-76
[67.]
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21Suppl 1: i351-8
[68.]
Neumann P, Novak P, Hostakova N. et al. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relation-ships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10:1
[69.]
Jurka J, Kapitonov VV, Pavlicek A. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462-7
[70.]
Wheeler TJ, Clements J, Eddy SR. et al. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41:D70-82
[71.]
Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotrans-posons. Plant Physiol. 2018;176:1410-22
[72.]
Griffiths-Jones S, Grocock RJ, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140-4
[73.]
Griffiths-Jones S, Moxon S, Marshall M. et al. Rfam: annotat-ing non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33:D121-4
[74.]
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homol-ogy searches. Bioinformatics. 2013;29:2933-5
[75.]
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157
[76.]
Guindon S, Dufayard JF, Lefort V. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307-21
[77.]
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586-91
[78.]
De Bie T, Cristianini N, Demuth JP. et al. CAFE: a computa-tional tool for the study of gene family evolution. Bioinformatics. 2006;22:1269-71
[79.]
She R, Chu JS, Wang K. et al. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19: 143-9
[80.]
Wang Y, Tang H, Debarry JD. et al. MCScanX: a toolkit for detec-tion and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49.
[81.]
Chen C, Chen H, Zhang Y. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194-202
[82.]
Li H, Handsaker B, Wysoker A. et al. The sequence alignmen-t/map format and SAMtools. Bioinformatics. 2009;25:2078-9
[83.]
McKenna A, Hanna M, Banks E. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297-303
[84.]
Chen K, Wallis JW, McLellan MD. et al. BreakDancer: an algo-rithm for high-resolution mapping of genomic structural vari-ation. Nat Methods. 2009;6:677-81
[85.]
Abyzov A, Urban AE, Snyder M. et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974-84
[86.]
Danecek P, Auton A, Abecasis G. et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156-8
[87.]
Yang J, Lee SH, Goddard ME. et al. Genome-wide Complex Trait Analysis (GCTA): methods, data analyses, and interpretations. Methods Mol Biol. 2013;1019:215-36
[88.]
Gao F, Ming C, Hu W. et al. New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era. G. (Bethesda). 2016;6:1563-71
[89.]
Zhang C, Dong SS, Xu JY. et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics. 2019;35:1786-8
[90.]
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493-6
[91.]
Fumagalli M, Vieira FG, Korneliussen TS. et al. Quantifying pop-ulation genetic differentiation from next-generation sequenc-ing data. Genetics. 2013;195:979-92
[92.]
Excoffier L, Dupanloup I, Huerta-Sanchez E. et al. Robust demo-graphic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905.
[93.]
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.
[94.]
Padalia H, Srivastava V, Kushwaha SP. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)? Environ Monit Assess. 2015;187:210
[95.]
Hosni EM, Nasser MG, Al-Ashaal SA. et al. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci Rep. 2020;10:4947
[96.]
Marques I, Draper D, Lopez-Herranz ML. et al. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae). Sci Rep. 2016;6:36283
[97.]
Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST out-lier tests. Mol Ecol. 2014;23:2178-92
[98.]
Ashburner M, Ball CA, Blake JA. et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25-9
[99.]
Kanehisa M, Sato Y, Kawashima M. et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457-62
[100.]
Szklarczyk D, Gable AL, Lyon D. et al. STRING v11: protein-protein association networks with increased coverage, sup-porting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607-13
[101.]
Li LF, Cushman SA, He YX. et al. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Hortic Res. 2020;7:130
[102.]
Frichot E, Schoville SD, Bouchard G. et al. Testing for associa-tions between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687-99
[103.]
Caye K, Jumentier B, Lepeule J. et al. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol. 2019;36:852-60
[104.]
Rellstab C, Gugerli F, Eckert AJ. et al. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348-70
[105.]
Forester BR, Lasky JR, Wagner HH. et al. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215-33
[106.]
Dauphin B, Rellstab C, Schmid M. et al. Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Glob Change Biol. 2021;27:1181-95
[107.]
Hoffmann AA, Weeks AR, Sgrò CM. Opportunities and chal-lenges in assessing climate change vulnerability through genomics. Cell. 2021;184:1420-5
PDF

Accesses

Citations

Detail

Sections
Recommended

/