The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression

Lan Lan, Luhong Leng, Weichao Liu, Yonglin Ren, Wayne Reeve, Xiaopeng Fu, Zhiqiang Wu, Xiaoni Zhang

Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 244.

PDF
Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 244. DOI: 10.1093/hr/uhad244
ARTICLES

The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression

Author information +
History +

Abstract

Carnation (Dianthus caryophyllus) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety ‘Baltico’, which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.

Cite this article

Download citation ▾
Lan Lan, Luhong Leng, Weichao Liu, Yonglin Ren, Wayne Reeve, Xiaopeng Fu, Zhiqiang Wu, Xiaoni Zhang. The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. Horticulture Research, 2024, 11(1): 244 https://doi.org/10.1093/hr/uhad244

References

[1.]
Nimura M, Kato J, Mii M. et al. Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and Dianthus japonicus Thunb. Theor Appl Genet. 2003;106:1164-70
[2.]
Nimura M, Kato J, Horaguchi H. et al. Induction of fertile amphidiploids by artificial chromosome-doubling in interspe-cific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci. 2006;56:303-10
[3.]
Zhang L, Hu J, Han X. et al. A high-quality apple genome assem-bly reveals the association of a retrotransposon and red fruit colour. Nat Commun. 2019;10:1494
[4.]
Wang S, Xiao Y, Zhou Z-W. et al. High-quality reference genome sequences of two coconut cultivars provide insights into evo-lution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol. 2021;22:304
[5.]
Zhang X, Wu R, Wang Y. et al. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J. 2020;18:66-72
[6.]
Zhang T, Zhou J, Gao W. et al. Complex genome assembly based on long-read sequencing. Brief Bioinform. 2022;23:bbac305
[7.]
Michael TP, VanBuren R. Building near-complete plant genomes. Curr Opin Plant Biol. 2020;54:26-33
[8.]
Nurk S, Koren S, Rhie A. et al. The complete sequence of a human genome. Science. 2022;376:44-53
[9.]
Hoyt SJ, Storer JM, Hartley GA. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat ele-ments. Science. 2022;376:eabk3112
[10.]
Liao X, Li M, Zou Y. et al. Current challenges and solutions of de novo assembly. Quant Biol. 2019;7:90-109
[11.]
Alkan C, Carbone L, Dennis M. et al. Implications of the first complete human genome assembly. Genome Res. 2022;32:595-8
[12.]
Naish, Alonge M, M, Wlodzimierz P. et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science. 2021;374:eabi7489
[13.]
Deng Y, Liu S, Zhang Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022;15:1268-84
[14.]
Song J-M, Xie W-Z, Wang S. et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol Plant. 2021;14:1757-67
[15.]
Han X, Zhang Y, Zhang Q. et al. Two haplotype-resolved, gap-free genome assemblies of Actinidia latifolia and Actinidia chinensis shed light on regulation mechanisms of vitamin C and sucrose metabolism in kiwifruit. Mol Plant. 2023;16:452-70
[16.]
Fu A, Zheng Y, Guo J. et al. Telomere-to-telomere genome assem-bly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics. Hortic Res. 2023;10:uhac228
[17.]
Li F, Xu S, Xiao Z. et al. Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa. Hortic Res. 2023;10:uhad057
[18.]
Shi X, Cao S, Wang X. et al. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic Res. 2023;10:uhad061
[19.]
Zhang X, Lin S, Peng D. et al. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers. Plant Biotechnol J. 2022;20:1182-96
[20.]
Tian Y, Thrimawithana A, Ding T. et al. Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (Malus spp.). Plant Biotechnol J. 2022;20:1285-97
[21.]
Iwata H, Gaston A, Remay A. et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012;69:116-25
[22.]
Guo M, Rupe MA, Zinselmeier C. et al. Allelic variation of gene expression in maize hybrids. Plant Cell. 2004;16:1707-16
[23.]
Guo M, Rupe MA, Yang X. et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet. 2006;113:831-45
[24.]
Waters AJ, Makarevitch I, Noshay J. et al. Natural variation for gene expression responses to abiotic stress in maize. Plant J. 2017;89:706-17
[25.]
Von Korff M, Radovic S, Choumane W. et al. Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J. 2009;59:14-26
[26.]
Koonin EV. Evolution of genome architecture. Int J Biochem Cell Biol. 2009;41:298-306
[27.]
Belokopytova P, Fishman V. Predicting genome architecture: challenges and solutions. Front Genet. 2021;11:617202
[28.]
Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature. 2002;416:499-506
[29.]
Nott A, Meislin SH, Moore MJ. A quantitative analysis of intron effects on mammalian gene expression. RNA. 2003;9:607-17
[30.]
Chuong EB, Elde NC, Feschotte C. Regulatory activities of trans-posable elements: from conflicts to benefits. Nat Rev Genet. 2017;18:71-86
[31.]
Chuong EB, Rumi MK, Soares MJ. et al. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45:325-9
[32.]
Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351:1083-7
[33.]
Bourque G, Leong B, Vega VB. et al. Evolution of the mam-malian transcription factor binding repertoire via transposable elements. Genome Res. 2008;18:1752-62
[34.]
Lunyak VV, Prefontaine GG, Núñez E. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science. 2007;317:248-51
[35.]
Lippman Z, Gendrel A-V, Black M. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004;430:471-6
[36.]
Zhao M, Ma J. Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell. 2013;4:493-501
[37.]
Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR assembly index (LAI). Nucleic Acids Res. 2018;46:e126-6
[38.]
Yagi M, Kosugi S, Hirakawa H. et al. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res. 2014;21: 231-41
[39.]
Yagi M, Shirasawa K, Waki T. et al. Construction of an SSR and RAD marker-based genetic linkage map for carnation (Dianthus caryophyllus L.). Plant Mol Biol Rep. 2017;35:110-7
[40.]
Vuruputoor VS, Monyak D, Fetter KC. et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant genomes. Appl Plant Sci. 2023;11:e11533
[41.]
Tang D, Jia Y, Zhang J. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022;606:535-41
[42.]
Niu S, Li J, Bo W. et al. The Chinese pine genome and methy-lome unveil key features of conifer evolution. Cell. 2022;185:204-217.e214
[43.]
Yin R, Messner B, Faus-Kessler T. et al. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic path-ways upon a compromised flavonol-3-O-glycosylation. JExp Bot. 2012;63:2465-78
[44.]
Mølhøj M, Verma R, Reiter WD. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J. 2003;35:693-703
[45.]
Stoler S, Keith KC, Curnick KE. et al. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 1995;9:573-86
[46.]
Shang W-H, Hori T, Toyoda A. et al. Chickens possess cen-tromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010;20:1219-28
[47.]
Henikoff S, Ahmad K, Malik HS. The centromere paradox: sta-ble inheritance with rapidly evolving DNA. Science. 2001;293: 1098-102
[48.]
Jiang J, Birchler JA, Parrott WA. et al. A molecular view of plant centromeres. Trends Plant Sci. 2003;8:570-5
[49.]
Melters DP, Bradnam KR, Young HA. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10-20
[50.]
Hosouchi T, Kumekawa N, Tsuruoka H. et al. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 2002;9:117-21
[51.]
Lee H-R, Zhang W, Langdon T. et al. Chromatin immunopre-cipitation cloning reveals rapid evolutionary patterns of cen-tromeric DNA in Oryza species. Proc Natl Acad Sci USA. 2005;102: 11793-8.
[52.]
Nasuda S, Hudakova S, Schubert I. et al. Stable barley chro-mosomes without centromeric repeats. Proc Natl Acad Sci USA. 2005;102:9842-7
[53.]
Locke DP, Hillier LW, Warren WC. et al. Comparative and demographic analysis of orang-utan genomes. Nature. 2011;469: 529-33
[54.]
Gong Z, Wu Y, Koblížková A. et al. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012;24:3559-74
[55.]
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20:299-309
[56.]
Podlevsky JD, Chen JJ-L. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016;13:720-32
[57.]
Cook DE, Zdraljevic S, Tanny RE. et al. The genetic basis of nat-ural variation in Caenorhabditis elegans telomere length. Genetics. 2016;204:371-83
[58.]
Codd V, Nelson CP, Albrecht E. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422-7
[59.]
Choi JY, Abdulkina LR, Yin J. et al. Natural variation in plant telomere length is associated with flowering time. Plant Cell. 2021;33:1118-34
[60.]
Todesco M, Balasubramanian S, Hu TT. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature. 2010;465:632-6
[61.]
Cleary S, Seoighe C. Perspectives on allele-specific expression. Annu Rev Biomed Data Sci. 2021;4:101-22
[62.]
Chiaromonte F, Miller W, Bouhassira EE. Gene length and prox-imity to neighbors affect genome-wide expression levels. Genome Res. 2003;13:2602-8
[63.]
Castillo-Davis CI, Mekhedov SL, Hartl DL. et al. Selection for short introns in highly expressed genes. Nat Genet. 2002;31:415-8
[64.]
Yang D, Xu A, Shen P. et al. A two-level model for the role of com-plex and young genes in the formation of organism complexity and new insights into the relationship between evolution and development. EvoDevo. 2018;9:22
[65.]
Sahakyan AB, Balasubramanian S. Long genes and genes with multiple splice variants are enriched in pathways linked to can-cer and other multigenic diseases. BMC Genomics. 2016;17:225
[66.]
Yao J-L, Dong Y-H, Morris BA. Parthenocarpic apple fruit produc-tion conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA. 2001;98:1306-11.
[67.]
Cheng H, Concepcion GT, Feng X. et al. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170-5
[68.]
Dudchenko O, Batra SS, Omer AD. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92-5
[69.]
Durand NC, Shamim MS, Machol I. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95-8
[70.]
Xu M, Guo L, Gu S. et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience. 2020;9:giaa094
[71.]
Camacho C, Coulouris G, Avagyan V. et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421
[72.]
Walker BJ, Abeel T, Shea T. et al. Pilon: an integrated tool for com-prehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963
[73.]
Mapleson D, Garcia Accinelli G, Kettleborough G. et al. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics. 2017;33:574-6
[74.]
Manni M, Berkeley MR, Seppey M. et al. BUSCO update: novel and streamlined workflows along with broader and deeper phyloge-netic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647-54
[75.]
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573-80
[76.]
Kim D, Paggi JM, Park C. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907-15
[77.]
Haas BJ, Papanicolaou A, Yassour M. et al. De novo transcript sequence reconstruction from RNA-seq using the trinity plat-form for reference generation and analysis. Nat Protoc. 2013;8: 1494-512
[78.]
Haas BJ, Delcher AL, Mount SM. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assem-blies. Nucleic Acids Res. 2003;31:5654-66
[79.]
Stanke M, Keller O, Gunduz I. et al. AUGUSTUS: ab initio predic-tion of alternative transcripts. Nucleic Acids Res. 2006;34:W435-9
[80.]
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5: 59-9
[81.]
Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20:2878-9
[82.]
Ou S, Su W, Liao Y. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehen-sive pipeline. Genome Biol. 2019;20:275
[83.]
Steuernagel B, Witek K, Krattinger SG. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468-82
[84.]
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094-100
[85.]
Goel M, Sun H, Jiao W-B. et al. SyRI: finding genomic rear-rangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277
[86.]
He W, Yang J, Jing Y. et al. NGenomeSyn: an easy-to-use and flex-ible tool for publication-ready visualization of syntenic relation-ships across multiple genomes. Bioinformatics. 2023;39:btad121
[87.]
Wang Y, Tang H, Debarry JD. et al. MCScanX: a toolkit for detec-tion and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49-9
[88.]
Putri GH, Anders S, Pyl PT. et al. Analysing high-throughput sequencing data in python with HTSeq 2.0. Bioinformatics. 2022;38:2943-5
[89.]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550
[90.]
Pertea M, Pertea GM, Antonescu CM. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290-5
[91.]
Aunin E, Berriman M, Reid AJ. Characterising genome archi-tectures using genome decomposition analysis. BMC Genomics. 2022;23:398
[92.]
McInnes L, Healy J, Melville J. Umap: uniform manifold approx-imation and projection for dimension reduction. ArXiv 2018
[93.]
McInnes L, Healy J, Astels S. Hdbscan: hierarchical density based clustering. J Open Source Softw. 2017;2:205
PDF

Accesses

Citations

Detail

Sections
Recommended

/