CAUM: A software for calculating and assessing chemical ages of uranium minerals
Hao Song, Tao Xiao, Guoxiang Chi, Zexin Wang, Zhengqi Xu, Mingcai Hou
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102031.
CAUM: A software for calculating and assessing chemical ages of uranium minerals
It has been shown that the age of minerals in which U ± Th are a major (e.g., uraninite, pitchblende and thorite) or minor (e.g., monazite, xenotime) component can be calculated from the concentrations of U ± Th and Pb rather than their isotopes, and such ages are referred to as chemical ages. Although equations for calculating the chemical ages have been well established and various computation programs have been reported, there is a lack of software that can not only calculate the chemical ages of individual analytical points but also provide an evaluation of the errors of individual ages as well as the whole dataset. In this paper, we develop a software for calculating and assessing the chemical ages of uranium minerals (CAUM), an open-source Python-based program with a friendly Graphical User Interface (GUI). Electron probe microanalysis (EPMA) data of uranium minerals are first imported from Excel files and used to calculate the chemical ages and associated errors of individual analytical points. The age data are then visualized to aid evaluating if the dataset comprises one or multiple populations and whether or not there are meaningful correlations between the chemical ages and impurities. Actions can then be taken to evaluate the errors within individual populations and the significance of the correlations. The use of the software is demonstrated with examples from published data.
Chemical ages / Uranium minerals / EPMA / U-Th-Pb geochronology / Software / Python
P. Alexandre, K. Kyser, D. Layton-Matthews, B. Joy, Y. Uvarova. Chemical compositions of natural uraninite. Can. Mineral., 53 (2015), pp. 595-622
|
P. Alexandre, K. Kyser, D. Thomas, P. Polito, J. Marlat. Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Mineral. Deposita, 44 (2009), pp. 41-59
|
P. Alexandre, T.K. Kyser. Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. Can. Mineral., 43 (2005), pp. 1005-1017
|
P. Appel. ‘‘AgeFinder’’: A Mac OS X computer program to evaluate electron microprobe data of monazite for chemical age dating. Comput. Geosci., 36 (2010), pp. 559-563
|
J.F.W. Bowles. Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem. Geol., 83 (1990), pp. 47-53
|
J.F.W. Bowles. Age dating from electron microprobe analyses of U, Th and Pb: Geological advantages and analytical difficulties. Microsc. Microanal., 21 (2015), pp. 1114-1122
|
Cameron-Schiman, M., 1978. Electron microprobe study of uranium minerals and its application to some Canadian deposit. Ph. D. thesis.University of Alberta, Edmonton, pp. 1–343.
|
C. Carl, E. von Pechmann, A. Höhndrof, G. Ruhrmann. Mineralogy and U/Pb, Pb/Pb, and Sm/Nd geochronology of the Key Lake uranium deposit, Athabasca Basin, Saskatchewan, Canada. Can. J. Earth Sci., 29 (5) (1992), pp. 879-895
|
G. Chi, Z. Li, H. Chu, K.M. Bethune, D.H. Quirt, P. Ledru, C. Normand, C. Card, S. Bosman, W.J. Davis, E.G. Potter. A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca Basin. Econ. Geol., 113 (2018), pp. 1209-1217
|
A. Cocherie, E.B. Mezeme, O. Legendre, C.M. Fanning, M. Faure, P. Rossi. Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazite. Am. Mineral., 90 (2005), pp. 607-718
|
A. Cross, S. Jaireth, R. Rapp, R. Armstrong. Reconnaissance-style EPMA chemical U–Th–Pb dating of uraninite. Aust. J. Earth Sci., 58 (6) (2011), pp. 675-683
|
J.J. Donovan, H.A. Lowers, B.G. Rusk. Improved electron probe microanalysis of trace elements in quartz. Am. Mineral., 96 (2011), pp. 274-282
|
M. Fayek, T.K. Kyser, L. Riciputi. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada. Can. Mineral., 40 (2002), pp. 1553-1569
|
H.J. Förster. The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineral. Mag., 63 (2) (1999), pp. 239-252
|
H.E. Frimmel, S. Schedel, H. Brätz. Uraninite chemistry as forensic tool for provenance analysis. Appl. Geochem., 48 (2014), pp. 104-121
|
X.K. Ge, M.K. Qin, G. Fan. Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende. World Nuclear Geoscience, 28 (1) (2011), pp. 55-62
|
T. Geisler. A 32-bit Windows program for chemical age calculations and the graphical data presentation. Eur. J. Mineral., 11 (1999), p. 154
|
V.N. Golubev, L.B. Makar’ev, L.V. Bylinskaya. Deposition and remobilization of uranium in the North Baikal region: Evidence from the U-Pb isotopic systems of uranium ores. Geol. Ore Deps., 50 (6) (2008), pp. 482-490
|
G.L. Guo, S.Z. Zhang, X.D. Liu, Z.S. Feng, D.R. Lai, W.T. Zhou. EPMA chemical U-Th-Pb dating of uraninite in Guangshigou uranium deposit. J. East China Inst. Technol. (Natl. Sci.), 35 (4) (2012), pp. 309-314
|
J.H. Hills, J.R. Richards. Pitchblende and galena ages in the Alligator Rivers region, Northern Territory, Australia. Mineral. Deposita, 11 (2) (1976), pp. 133-154
|
H. Huang, Y.J. Pan, B.Y. Hong, Q.Q. Kang, F.J. Zhong. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shanxi Province and its geological significance. Mineral Deposits, 39 (2) (2020), pp. 351-368
|
T. Kato, K. Suzuki. 'Background holes' in X-ray spectrometry usinga pentaerythritol (PET) analyzing crystal. J. Mineral. Petrol. Sci., 109 (2014), pp. 151-155
|
Kato, T., Suzuki, K., Adachi, M., 1999. Computer program for the CHIME age calculation. J. Earth Planet. Sci. 46, 49–56.
|
U. Kempe. Precise electron microprobe age determination in altered uraninite: Consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany). Contrib. Mineral. Petrol., 145 (2003), pp. 107-118
|
H.O. Lancaster, E. Seneta. Chi-square distribution. P. Armitage, T. Colton (Eds.), Encyclopedia of Biostatistics, John Wiley and Sons, New York (2005)
|
K.R. Ludwig. Isotopic: a plotting and regression program for radiogenic-isotope data, version 2.53. U.S. Geological Survey, Denver. Open-File Report (1991)
|
K.R. Ludwig, R.I. Crauch, C.J. Nult, J.T. Nash, D. Frishman, K.R. Simmons. Age of uranium mineralization at the Jabiluka and Ranger deposits, northern territory, Australia: New U-Pb isotope evidence. Econ. Geol., 82 (4) (1987), pp. 857-874
|
I. McDougall, T.M. Harrison. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York (1999)
|
G.A. Mcintyre, C. Brooks, W. Compston, A. Turek. The statistical assessment of Rb-Sr isochrons. J. Geophys. Res., 71 (1966), pp. 5459-5468
|
J. Mercadier, M. Cuney, P. Lach, M.-C. Boiron, J. Bonhoure, A. Richard, M. Leisen, P. Kister. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova, 23 (2011), pp. 264-269
|
J.M. Montel, S. Foret, M. Veschambre, C. Nicollet, A. Provost. Electron microprobe dating of monazite. Chem. Geol., 131 (1996), pp. 37-53
|
M.K. Ozha, D.C. Pal, B. Mishra, T. Desapati, T.S. Shaji. Geochemistry and chemical dating of uraninite in the Samarkiya area, central Rajasthan, northwestern India - implication for geochemical and temporal evolution of uranium mineralization. Ore Geol. Rev., 88 (2017), pp. 23-42
|
D.C. Pal, D. Rhede. Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum shear zone, India: Implications for uranium mineralization and geochemical evolution of uraninite. Econ. Geol., 108 (6) (2013), pp. 1499-1515
|
R.R. Parrish. U-Pb dating of monazite and its application to geological problems. Can. J. Earth Sci., 27 (1990), pp. 1431-1450
|
L.N. Pei, C.Y. Guo, M.L. Zhou. EPMA chemical age of pitchblende and its geological significance in Xianshi uranium deposit of Xiazhuang ore field, the northern Guangdong, China. J. Earth Sci. Environ., 43 (5) (2021), pp. 814-828
|
Pommier, A., Cocherie, A., Legendre, O., 2003. EPMA dating: A program for age calculation from electron microprobe measurements of U‐Th‐Pb. In EGS - AGU - EUG 2003 Joint Assembly, Abstracts from the meeting held in Nice, France, abstract id. 9054.
|
J.M. Pyle, F.S. Spear, D.A. Wark. Contributions to precision and accuracy of monazite microprobe ages. Am. Mineral., 90 (4) (2005), pp. 547-577
|
W.X. Quan, J.Q. Ji, J. Zhou, W.R. Li, J.Y. Tu. Evaluation of K-Ar and 40Ar/39Ar dating and Q value. Acta Petrol. Sin., 29 (8) (2013), pp. 2803-2810
|
G. Ranchin. Contribution à 1’étude de la répartition de l’uranium ò 1’état de traces dans les roches granitiques saines les uranites à teneur élevée du Massif de Saint-Svlvestre (Limousin-Massif Central Francais). Science Terre., 13 (1968), pp. 161-205
|
M.S. Sambridge, W. Compston. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet. Sci. Lett., 128 (1994), pp. 373-390
|
H. Song, G.X. Chi, C.J. Zhang, D.R. Xu, Z.Q. Xu, G. Fan. Uranium enrichment in the Lala Cu-Fe deposit, Kangdian region, China: a new case of uranium mineralization associated with an IOCG system. Ore Geol. Rev., 121 (2020), pp. 1-13
|
H. Song, C.J. Zhang, S.J. Ni, Z.Q. Xu, C.H. Huang. New evidence for genesis of the Zoige carbonate-siliceous-pelitic rock type uranium deposit in the Southern Qinling: Discovery and significance of the 64 Ma intrusions. Acta Geologica Sinica (English Edition)., 88 (6) (2014), pp. 1801-1814
|
R.H. Steiger, E. Jäger. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36 (1977), pp. 359-362
|
K. Suzuki, M. Adachi. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem. J., 25 (1991), pp. 357-376
|
K. Suzuki, M. Adachi. Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan. Their origin and implication for the correlation of the basement of Southwest Japan and Korea. Tectonophysics, 235 (1994), pp. 277-292
|
K. Suzuki, M. Adachi, T. Tanaka. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sediment. Geol., 75 (1991), pp. 141-147
|
K. Suzuki, T. Kato. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol pitfalls, and chemical criterion of possibly discordant age data. Gondwana Res., 14 (4) (2008), pp. 569-586
|
S.L. Votyakov, K.S. Ivanov, V. Khiller, V. Bochkarev, Y. Erokhin. Chemical microprobe Th-U-Pb age dating of monazite and uraninite grains from granites of the Yamal crystalline basement. Dokl. Earth Sci., 439 (2011), pp. 994-997
|
R.L. Wasserstein, N. Lazar. The ASA’s statement on p-values: context, process, and purpose. Am. Stat., 70 (2016), pp. 129-133
|
I. Wendt, C. Carl. The statistical distribution of the mean squared weighted deviation. Chem. Geol., 86 (1991), pp. 275-285
|
Z.M. Zhang. The application of electron microprobe on dating uraninite. Radioactive Geology, 5 (1982), pp. 408-411
|
/
〈 |
|
〉 |