Forecasting strong subsequent earthquakes in Japan using an improved version of NESTORE machine learning algorithm

S. Gentili, G.D. Chiappetta, G. Petrillo, P. Brondi, J. Zhuang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102016.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102016. DOI: 10.1016/j.gsf.2025.102016

Forecasting strong subsequent earthquakes in Japan using an improved version of NESTORE machine learning algorithm

Author information +
History +

Abstract

In this study, the advanced machine learning algorithm NESTORE (Next STrOng Related Earthquake) was applied to the Japan Meteorological Agency catalog (1973–2024). It calculates the probability that the aftershocks will reach or exceed a magnitude equal to the magnitude of the mainshock minus one and classifies the clusters as type A or type B, depending on whether this condition is met or not. It has been shown useful in the tests in Italy, western Slovenia, Greece, and California. Due to Japan’s high and complex seismic activity, new algorithms were developed to complement NESTORE: a hybrid cluster identification method, which uses both ETAS-based stochastic declustering and deterministic graph-based selection, and REPENESE (RElevant features, class imbalance PErcentage, NEighbour detection, SElection), an algorithm for detecting outliers in skewed class distributions, which takes in account if one class has a larger number of samples with respect to the other (class imbalance).

Keywords

Machine learning / Cluster identification / ETAS / Strong aftershock / Japan / Outliers detection

Cite this article

Download citation ▾
S. Gentili, G.D. Chiappetta, G. Petrillo, P. Brondi, J. Zhuang. Forecasting strong subsequent earthquakes in Japan using an improved version of NESTORE machine learning algorithm. Geoscience Frontiers, 2025, 16(3): 102016 https://doi.org/10.1016/j.gsf.2025.102016

References

E.-A. Anyfadi, S. Gentili, P. Brondi, F. Vallianatos. Forecasting strong subsequent earthquakes in Greece with the machine learning algorithm NESTORE. Entropy, 25 (5) (2023), p. 797,
CrossRef Google scholar
D.F. Argus, R.G. Gordon, C. DeMets. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst., 12 (2011), p. 11,
CrossRef Google scholar
M. Båth. Lateral inhomogeneities in the upper mantle. Tectonophysics, 2 (1965), pp. 483-514,
CrossRef Google scholar
Brondi, P., Gentili, S., Di Giovambattista R., 2023. Forecasting strong aftershocks in the Italian territory: A National and Regional application for NESTOREv1.0, EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023.
Brondi, P., Gentili, S., Di Giovambattista R., 2024. Forecasting strong subsequent events in the Italian territory: a National and Regional application for NESTOREv1.0. Nat. Hazards.
CrossRef Google scholar
K. Dascher-Cousineau, O. Shchur, E.E. Brodsky, S. Günnemann. Using deep learning for flexible and scalable earthquake forecasting. Geophys. Res. Lett., 50 (17) (2023), Article e2023GL103909,
CrossRef Google scholar
S.D. Davis, C. Frohlich. Single-link cluster analysis, synthetic earthquake catalogues, and aftershock identification. Geophys. J. Int., 104 (2) (1991), pp. 289-306,
CrossRef Google scholar
L. de Arcangelis, C. Godano, E. Lippiello. The overlap of aftershock coda waves and short-term postseismic forecasting. J. Geophys. Res. Solid Earth, 123 (7) (2018), pp. 5661-5674,
CrossRef Google scholar
C. DeMets, R.G. Gordon, D.F. Argus. Geologically current plate motions. Geophys. J. Int., 181 (1) (2010), pp. 1-80,
CrossRef Google scholar
P.M.R. DeVries, F. Viégas, M. Wattenberg, B.J. Meade. Deep learning of aftershock patterns following large earthquakes. Nature, 560 (2018), pp. 632-634,
CrossRef Google scholar
J.P. Egan. Signal Detection Theory and ROC Analysis, Series in Cognition and Perception. Academic Press, New York (1975)
M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (1996)
T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27 (8) (2006), pp. 861-874,
CrossRef Google scholar
C. Frohlich, S.D. Davis. Single-Link Cluster Analysis as a Method to Evaluate Spatial and Temporal Properties of Earthquake Catalogues. Geophys. J. Int., 100 (1) (1990), pp. 19-32,
CrossRef Google scholar
Y. Fukushima, T. Nishikawa, Y. Kano. High probability of successive occurrence of Nankai megathrust earthquakes. Sci. Rep., 13 (2023), p. 63,
CrossRef Google scholar
J.K. Gardner, L. Knopoff. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bullet. Seismol. Soc. Am., 64 (5) (1974), pp. 1363-1367,
CrossRef Google scholar
S. Gentili. Radiated energy evolution during seismic sequences. Phys. Earth Planet. Inter., 196–197 (2012), pp. 49-61,
CrossRef Google scholar
S. Gentili, G. Bressan. The partitioning of radiated energy and the largest aftershock of seismic sequences occurred in the northeastern Italy and western Slovenia. J. Seismol., 12 (2008), pp. 343-354,
CrossRef Google scholar
S. Gentili, R. Di Giovambattista. Pattern recognition approach to the subsequent event of damaging earthquakes in Italy. Phys. Earth Planet. Inter., 266 (2017), pp. 1-17,
CrossRef Google scholar
S. Gentili, R. Di Giovambattista. Forecasting strong aftershocks in earthquake clusters from northeastern Italy and western Slovenia. Phys. Earth Planet. Inter., 303 (2020), Article 106483,
CrossRef Google scholar
S. Gentili, R. Di Giovambattista. Forecasting strong subsequent earthquakes in California clusters by machine learning. Phys. Earth Planet. Inter., 327 (2022), Article 106879,
CrossRef Google scholar
S. Gentili, P. Brondi, R. Di Giovambattista. NESTOREv1.0: A MATLAB package for strong forthcoming earthquake forecasting. Seismol. Res. Lett., 94 (4) (2023), pp. 2003-2013,
CrossRef Google scholar
S. Gentili, P. Brondi, G. Rossi, M. Sugan, G. Petrillo, J. Zhuang, S. Campanella. Seismic clusters and fluids diffusion: a lesson from the 2018 Molise (Southern Italy) earthquake sequence. Earth Planets Space, 76 (2024), p. 157,
CrossRef Google scholar
L. Gulia, S. Wiemer, G. Vannucci. Prospective evaluation of the foreshock traffic light system in Ridgecrest and implications for aftershock hazard assessment. Seismol. Res. Lett., 91 (5) (2020), pp. 2828-2842,
CrossRef Google scholar
F. Hirose, K. Maeda. Earthquake forecast models for inland Japan based on the G-R law and the modified G-R law. Earth Planets Space, 63 (2011), pp. 239-260,
CrossRef Google scholar
M. Hoshiba, O. Kamigaichi, M. Saito, S. Tsukada, N. Hamada. Earthquake Early Warning Starts Nationwide in Japan. Eos Trans. Am. Geoph. Un., 89 (8) (2008), pp. 73-74,
CrossRef Google scholar
T. Iidaka, K. Obara. Shear-wave splitting in a region with newly-activated seismicity after the 2011 Tohoku earthquake. Earth Planets Space, 65 (2013), pp. 1059-1064,
CrossRef Google scholar
T. Ishibe, K. Shimazaki, K. Satake, H. Tsuruoka. Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63 (2011), p. 40,
CrossRef Google scholar
Japan Meteorological Agency, 2024. The seismological bulletin of Japan. https://www.data.jma.go.jp/svd/eqev/data/bulletin/index_e.html.
Y. Kagan. Seismic moment distribution revisited: I. Statistical Results. Geophys. J. Int., 148 (2002), pp. 520-541,
CrossRef Google scholar
J. Kaizer, I. Kontuľ, P.P. Povinec. Impact of the Fukushima accident on 3H and 14C environmental levels: A review of ten years of investigation. Molecules, 28 (6) (2023), p. 2548,
CrossRef Google scholar
V.I. Keilis-Borok, V.G. Kossobokov. Time of increased probability for the great earthquakes of the world. Comput. Seismol, 19 (1986), pp. 48-58
Y. Kodera, N. Hayashimoto, K. Tamaribuchi, K. Noguchi, K. Moriwaki, R. Takahashi, M. Morimoto, K. Okamoto, M. Hoshiba. Developments of the nationwide earthquake early warning system in Japan after the 2011 Mw 9.0 Tohoku-Oki earthquake. Front. Earth Sci., 9 (2021), Article 726045,
CrossRef Google scholar
T. Lay. A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics, 733 (2018), pp. 4-36,
CrossRef Google scholar
E. Lippiello, G. Petrillo, F. Landes, A. Rosso. The genesis of aftershocks in Spring slider Models. Stat. Methods Modeling Seismog., 1 (2021), pp. 131-151,
CrossRef Google scholar
E. Lippiello, G. Petrillo. b-more-incomplete and b-more-positive: Insights on a robust estimator of magnitude distribution. J. Geophys. Res. : Solid Earth, 129 (2024), Article e2023JB027849,
CrossRef Google scholar
B. Lolli, P. Gasperini. Aftershocks hazard in Italy Part I: estimation of time magnitude distribution model parameters and computation of probabilities of occurrence. J. Seismol., 7 (2003), pp. 235-257,
CrossRef Google scholar
J. Luo, J. Zhuang. Three regimes of the distribution of the largest event in the critical ETAS model. Bull. Seismol. Soc. Am., 106 (3) (2016), pp. 1364-1369,
CrossRef Google scholar
C. Molkenthin, R.V. Donner, S. Reich, G. Zoller, S. Hainzl, M. Holschneider, M. Opper. GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model. Stat. Comput., 32 (2022), p. 29,
CrossRef Google scholar
F. Musmeci, D. Vere-Jones. A space-time clustering model for historical earthquakes. Ann. Inst. Stat. Math., 44 (1992), pp. 1-11,
CrossRef Google scholar
K.Z. Nanjo, T. Ishibe, H. Tsuruoka, D. Schorlemmer, Y. Ishigaki, N. Hirata. Analysis of the completeness magnitude and seismic network coverage of Japan. Bull. Seismol. Soc. Am., 100 (6) (2010), pp. 3261-3268,
CrossRef Google scholar
Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Asso., 83 (401) (1988), pp. 9-27,
CrossRef Google scholar
Y. Ogata. Space-time point-process models for earthquake occurrences. Annals Institute Stat. Math., 50 (1998), pp. 379-402,
CrossRef Google scholar
Y. Ogata, J. Zhuang. Space-time ETAS model and an improved extension. Tectonophysics, 413 (1–2) (2006), pp. 13-23,
CrossRef Google scholar
T. Omi, Y. Ogata, Y. Hirata, K. Aihara. Forecasting large aftershocks within one day after the main shock. Sci. Rep., 3 (2013), p. 2218,
CrossRef Google scholar
T. Parsons, R. Console, G. Falcone, M. Murru, K. Yamashina. Comparison of characteristic and Gutenberg—Richter models for time-dependent M ≥ 7.9 earthquake probability in the Nankai-Tokai subduction zone, Japan. Geophys. J. Int., 190 (3) (2012), pp. 1673-1688,
CrossRef Google scholar
G. Petrillo, T. Kumazawa, F. Napolitano, P. Capuano, J. Zhuang. Fluids‐triggered swarm sequence supported by a nonstationary epidemic‐like description of seismicity. Seismol. Res. Lett., 95 (6) (2024), pp. 3207-3220,
CrossRef Google scholar
G. Petrillo, J. Zhuang. Bayesian earthquake forecasting approach based on the epidemic type aftershock sequence model. Earth Planets Space, 76 (2024), p. 78,
CrossRef Google scholar
G. Petrillo, E. Lippiello. Testing of the foreshock hypothesis within an epidemic like description of seismicity. Geophys. J. Int., 225 (2) (2021), pp. 1236-1257,
CrossRef Google scholar
G. Petrillo, E. Lippiello. Incorporating foreshocks in an epidemic-like description of seismic occurrence in Italy. Appl. Sci., 13 (8) (2023), p. 4891,
CrossRef Google scholar
G. Petrillo, E. Lippiello, F.P. Landes, A. Rosso. The influence of the brittle-ductile transition zone on aftershock and foreshock occurrence. Nat. Commun., 11 (2020), p. 3010,
CrossRef Google scholar
G. Petrillo, A. Rosso, E. Lippiello. Testing of the seismic gap hypothesis in a model with realistic earthquake statistics. J. Geophys. Res. Solid Earth, 127 (2022), Article e2021JB023542,
CrossRef Google scholar
G. Petrillo, J. Zhuang. The debate on the earthquake magnitude correlations: A meta-analysis. Sci. Rep., 12 (1) (2022), p. 20683,
CrossRef Google scholar
G. Petrillo, J. Zhuang. Verifying the magnitude dependence in earthquake occurrence. Phys. Rev. Lett., 131 (15) (2023), Article 154101,
CrossRef Google scholar
P. Reasenberg. Second-order moment of central California seismicity, 1969–1982. J. Geophys. Res., 90 (B7) (1985), pp. 5479-5495,
CrossRef Google scholar
P.A. Reasenberg, L.M. Jones. Earthquake Aftershocks: Update. Science, 265 (1994), pp. 1251-1252,
CrossRef Google scholar
F. Romano, E. Trasatti, S. Lorito, C. Piromallo, A. Piatanesi, Y. Ito, D. Zhao, K. Hirata, P. Lanucara, M. Cocco. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data. Sci. Rep., 4 (2014), p. 5631,
CrossRef Google scholar
G.J. Ross. Bayesian estimation of the ETAS model for earthquake occurrences. Bull. Seismol. Soc. Am., 111 (3) (2021), pp. 1473-1480,
CrossRef Google scholar
J.G. Ross, A. Kolev. Semiparametric Bayesian forecasting of SpatioTemporal earthquake occurrences. Ann. Appl. Stat., 16 (4) (2022), pp. 2083-2100,
CrossRef Google scholar
P.J. Rousseeuw, M. Hubert. Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1) (2011), pp. 73-79,
CrossRef Google scholar
A. Saichev, D. Sornette. Distribution of the largest aftershocks in branching models of triggered seismicity: Theory of the universal Båth law. Phys. Rev. E., 71 (5) (2005), Article 056127,
CrossRef Google scholar
V.M. Schimmenti, G. Petrillo, A. Rosso, F.P. Landes. Assessing the predicting power of GPS data for aftershocks forecasting. Seismol. Res. Lett., 95 (6) (2024), pp. 3243-3249,
CrossRef Google scholar
R. Shcherbakov, K. Goda, A. Ivanian, G.M. Atkinson. Aftershock statistics of major subduction earthquakes. Bull. Seismol. Soc. Am., 103 (6) (2013), pp. 3222-3234,
CrossRef Google scholar
R. Shcherbakov, J. Zhuang, G. Zöller, Y. Ogata. Forecasting the magnitude of the largest expected earthquake. Nat. Commun., 10 (2019), p. 4051,
CrossRef Google scholar
I. Spassiani, G. Petrillo, J. Zhuang. Distribution related to all samples and extreme events in the ETAS cluster. Seismol. Res. Lett., 95 (6) (2024), pp. 3234-3242,
CrossRef Google scholar
S. Stockman, D.J. Lawson, M.J. Werner. Forecasting the 2016–2017 Central Apennines earthquake sequence with a neural point process. Earth's Future, 11 (2023), Article e2023EF003777,
CrossRef Google scholar
J.A. Sweets, R.M. Dawes, J. Monahan. Better decisions through science. Sci. Am., 283 (2000), pp. 82-87
K. Tamaribuchi. Evaluation of automatic hypocenter determination in the JMA unified catalog. Earth Planets Space, 70 (2018), p. 141,
CrossRef Google scholar
K. Tamaribuchi, F. Hirose, A. Noda, Y. Iwasaki, K. Iwakiri, H. Ueno. Noise classification for the unified earthquake catalog using ensemble learning: the enhanced image of seismic activity along the Japan Trench by the S-net seafloor network. Earth Planets Space, 73, 91 (2021),
CrossRef Google scholar
T. Ueda, A. Kato. Aftershocks following the 2011 Tohoku-Oki earthquake driven by both stress transfer and afterslip. Prog. Earth Planet. Sci., 10 (2023), p. 31,
CrossRef Google scholar
R.A. Uhrhammer. Characteristics of northern and central California seismicity. Earthquake Notes, 57 (1986), pp. 21-37
T. Utsu. Catalog of large earthquakes in the region of Japan from 1885 through 1980. Bull. Earthq. Res. Inst., Tokyo Univ., 57 (1982), pp. 401-463 (in Japanese)
A. Van Horne, H. Sato, T. Ishiyama. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics, 710–711 (2017), pp. 6-20,
CrossRef Google scholar
A. Veen, F.P. Schoenberg. Estimation of space–time branching process models in seismology using an EM–type algorithm. J. Am. Stat. Asso., 103 (482) (2008), pp. 614-624,
CrossRef Google scholar
D. Vere-Jones, J. Zhuang. Distribution of the largest event in the critical epidemic-type aftershock-sequence model. Phys. Rev. E., 78 (4) (2008), p. 7102,
CrossRef Google scholar
I.A. Vorobieva, G.F. Panza. Prediction of the occurrence of related strong earthquakes in Italy. Pure Applied Geophys., 141 (1993), pp. 25-41,
CrossRef Google scholar
Z. Wang, D. Zhao. 3D anisotropic structure of the Japan subduction zone. Sci. Adv., 7 (4) (2021), Article eabc9620,
CrossRef Google scholar
S. Wiemer, M. Wyss. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90 (4) (2000), pp. 859-869,
CrossRef Google scholar
S. Wiemer. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72 (3) (2001), pp. 373-382,
CrossRef Google scholar
A. Witze. Risk of human-triggered earthquakes laid out in biggest-ever database. Nature, 2017 (2017), p. 22693,
CrossRef Google scholar
J. Wu, J. Suppe, R. Lu, R. Kanda. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J. Geophys. Res. Solid Earth, 121 (6) (2016), pp. 4670-4741,
CrossRef Google scholar
Y. Xu, R. Goodacre. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test, 2 (2018), pp. 249-262,
CrossRef Google scholar
J. Zhuang, Y. Ogata, D. Vere-Jones. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Ass., 97 (458) (2002), pp. 369-380,
CrossRef Google scholar
J. Zhuang, Y. Ogata. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Phys. Rev. E., 73 (4) (2006), p. 6134,
CrossRef Google scholar
J. Zhuang, W.T. Ogata. Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters. Earth Planets Space, 69 (2017), p. 36,
CrossRef Google scholar
O. Zlydenko, G. Elidan, A. Hassidim, D. Kukliansky, Y. Matias, B. Meade, A. Molchanov, S. Nevo, Y. Bar-Sinai. A neural encoder for earthquake rate forecasting. Sci. Rep., 13 (2023), p. 12350,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/