Neoarchean-Paleoproterozoic metallogenesis associated with plate tectonics in early Earth: Insights from the North China Craton
Tao Zeng, Li Tang, M. Santosh, Hanhui Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101990.
Neoarchean-Paleoproterozoic metallogenesis associated with plate tectonics in early Earth: Insights from the North China Craton
Precambrian cratons are archives of several precious metallic deposits that significantly contribute to our planet’s resources and habitability and also provide key information on plate tectonics on Earth. The North China Craton (NCC) preserves important records of Neoarchean to Paleoproterozoic tectonic processes and associated episodes of metallogenic pulses that generated five major types of mineral deposits including banded iron formations (BIFs), volcanogenic massive sulfide (VMS) Cu–Pb–Zn deposits, orogenic Au deposits, magmatic sulfide Cu-Ni deposits and porphyry Cu deposits. These deposits are distributed in Neoarchean granite-greenstone belts and Paleoproterozoic orogenic belts, and show dominant mineralization ages of 2.6–2.5 Ga and two subordinate age groups of 2.7–2.6 Ga and 2.3–1.95 Ga. The Neoarchean metallogenic events generated BIFs, VMSs, Au and magmatic sulfide Cu-Ni deposits and the tectonic framework correlates with the microblock amalgamation and plate subduction possibly also aided by mantle plumes. The BIFs representing the dominant mineral deposits in Neoarchean are mainly Algoma-type with few examples of Superior-type. Meta-basaltic rocks associated with the Algoma-type BIF deposits in the granite-greenstone belts of the NCC display highly variable trace element compositions and LREE-depleted and LREE-enriched. The REE distribution patterns and high field-strength element characteristics of meta-basaltic rocks suggest the formation of BIF and VMS deposits in mid-ocean ridge, island arc and back-arc settings. The formation of VMS, Au and magmatic Cu-Ni deposits correspond to plate subduction and collision in a convergent continental margin setting during the late Neoarchean. The Paleoproterozoic deposits are represented by BIFs and porphyry Cu deposits. The Paleoproterozoic BIFs and meta-basaltic rocks correspond to magmatic-hydrothermal activities in passive continental margin or island arc settings, whereas the porphyry Cu deposits were formed in an extensional environment, corresponding to the Paleoproterozoic subduction-rifting events in the Trans-North China Orogen. The variation of δ56Fe, Ce anomalies and Y/Ho ratios in BIFs from Neoarchean to Paleoproterozoic indicate the initial increase of oxygen in late Neoarchean and the change of ambient marine environment from anoxic to oxic during the Great Oxidation Event. The multi-stage Neoarchean to Paleoproterozoic metallogenic systems of the NCC were intrinsically linked to the plate subduction along with arc-plume interaction and rifting-subduction-collision activities. The contemporaneous increasing in weathering of exposed continental crust due to plate subduction potentially controlled the atmosphere-hydrosphere oxidation state and formation of BIF deposits in the NCC.
North China Craton / Neoarchean to Paleoproterozoic metallogenesis / Tectonic evolution / Redox state change / Early plate tectonics
A.Q. Adetunji, G. Launay, I.J. Ferguson, J.M. Simmons, C. Ma, J. Ayer, B. Lafrance. Crustal conductivity footprint of the orogenic gold district in the Red Lake greenstone belt, western Superior craton, Canada. Geology, 51 (2023), pp. 377-382
|
D.S. Alibo, Y. Nozaki. Rare earth elements in seawater, particle association, shale normalization, and Ce oxidation. Geochim. Cosmochim. Acta., 63 (1999), pp. 363-372
|
J. Bai. The Early Precambrian Geology of Wutaishan Tianjin. Science and Technology (1986), pp. 1-385
|
M.E. Barley. Links between tectonics, the atmosphere and life in the Archean to early Paleoproterozoic. AGU Fall Meeting Abstracts (2011), pp. U13A-U
|
M. Bau, P. Dulski. Evolution of the yttrium-holmium systematics of seawater through time. Mineral. Mag., 58 (1994), pp. 61-62
|
M. Bau, P. Dulski. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr. Res., 79 (1996), pp. 37-55
|
M. Bau, P. Dulski. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge, implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol., 155 (1999), pp. 77-90
|
M. Bau, P. Mller, P. Dulski. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar. Chem., 56 (1997), pp. 123-131
|
B.L. Beard, C.M. Johnson, K.L. Von Damm, R.L. Poulson. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31 (2003), pp. 629-632
|
G.C. Begg, J.M.A. Hronsky, N.T. Arndt, W.L. Griffin, S.Y. O’Reilly, N. Hayward. Lithospheric, cratonic and geodynamic setting of Ni-Cu-PGE sulfide deposits. Econ. Geol., 105 (2010), pp. 1057-1070
|
A. Bekker, H. Holland, P.L. Wang, D. Rumble, H. Stein, J. Hannah, L. Coetzee, N. Beukes. Dating the rise of atmospheric oxygen. Nature, 427 (2004), pp. 117-120
|
A. Bekker, J.A. Karhu, A.J. Kaufman. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area North America. Precambrian Res., 148 (2006), pp. 145-180
|
A. Bekker, J.F. Slack, N. Planavsky, B. Krapez, A. Hofmann, K.O. Konhauser, O.J. Rouxel. Iron formation, the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol., 105 (2010), pp. 467-508
|
A. Bekker, N. Planavsky, B. Rasmussen, B. Krapez, A. Hofmann, J. Slack, O. Rouxel, K. Konhauser. 9.18 – Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (Second Edition), Elsevier (2014), pp. 561-628
|
R. Bolhar, B.S. Kamber, S. Moorbath, C.M. Fedo, M.J. Whitehouse. Characterization of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett., 222 (2004), pp. 43-60
|
P. Bonnand, S.V. Lalonde, M. Boyet, C. Heubeck, M. Homann, P. Nonnotte, I. Foster, K.O. Konhauser, I. Köhler. Post-depositional REE mobility in a Paleoarchean banded iron formation revealed by La-Ce geochronology: a cautionary tale for signals of ancient oxygenation. Earth Planet. Sci. Lett., 547 (2020), Article 116452
|
R. Byrne, E. Sholkovitz. Marine Chemistry and Geochemistry of the Lanthanides. K.A. Gschneider, L. Eyring (Eds.), Handbook on the Physics and Chemistry of the Rare Earths, Elsevier, Amsterdam (1996), pp. 497-593
|
I.H. Campbell. Testing the plume theory. Chem. Geol., 241 (2007), pp. 153-176
|
D.C. Catling, K.J. Zahnle. The Archean atmosphere. Sci. Adv., 6 (2020), Article eaax1420
|
P.A. Cawood, P. Chowdhury, J.A. Mulder, C.J. Hawkesworth, F.A. Capitanio, P.M. Gunawardana, O. Nebel. Secular evolution of continents and the Earth system. Rev. Geophys., 60 (2022), Article e2022RG000789
|
G.X. Chen, Q.M. Cheng, T.W. Lyons, J. Shen, F. Agterberg, N. Huang, M.L. Zhao. Reconstructing Earth’s atmospheric oxygenation history using machine learning. Nat. Commun., 13 (2022), Article 5862
|
W.M. Chen, S.P. Li. Rhenium-Osmium isotopic ages of sulfides from the Tongkuangyu porphyry copper deposit in the Zhongtiao Mountain. Mineral Deposits, 17 (1998), pp. 224-228
|
Cheng, Y.M., Li, J.J., Shen, B.F., Lu, J.S., 1996. Ore-forming and Ore-Searching Models for Greenstone Gold Deposits in Ji-Liao Region. Seismic Publishing House, Beijing, 182 pp. (in Chinese with English abstract).
|
A.P. Chorney, M.C. Steven. Iron precipitation under controlled oxygen flow: mineralogical implications for BIF precursors in the Archean Ocean. Chem. Geol., 618 (2023), Article 121279
|
W.J. Collins, S.W. Richards. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36 (2008), pp. 559-562
|
K.C. Condie, C. O’Neill, R.C. Aster. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett., 282 (2009), pp. 294-298
|
Condie, K.C., 1998. Episodic growth of juvenile crust and catastrophic events in the mantle. In: Origin and Evolution of Continents. Proceedings of an International Symposium, 13-14 October 1997, Tokyo, Memoirs of National Institute of Polar Research, Special Issue, 53, 1-7.
|
M.L. Cui, L.C. Zhang, H.Y. Wu, Y.X. Xu, W.J. Li. Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei province, North China Craton: constraints from geochemistry and SIMS zircon U–Pb dating. J. Asian Earth Sci., 94 (2014), pp. 240-251
|
A.D. Czaja, C.M. Johnson, B.L. Beard, E.E. Roden, W. Li, S. Moorbath. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett., 363 (2013), pp. 192-203
|
A.D. Czaja, M.J. Van Kranendonk, B.L. Beard, C.M. Johnson. A multistage origin for Neoarchean layered hematite-magnetite iron formation from the Weld Range, Yilgarn Craton, Western Australia. Chem. Geol., 488 (2018), pp. 125-137
|
Y.P. Dai, Y.D. Zhu, L.C. Zhang, C.L. Wang, C. Chen, D. Xiu. An overview of studies on Precambrian Banded Iron Formations (BIFs) in China and abroad. Geol. Rev., 62 (2016), pp. 735-757
|
N. Dauphas, N. Cates, S.J. Mojzsis, V. Busigny. Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt. Canada. Earth Planet. Sci. Lett., 254 (2007), pp. 357-376
|
N. Dauphas, S.G. John, O. Rouxel. Iron isotope systematics. Rev. Mineral. Geochem., 82 (2017), pp. 415-510
|
H. Deng, T. Kusky, A. Polat, B. Lan, B. Huang, H. Peng, J. Wang, S. Wang. Magmatic record of Neoarchean arc-polarity reversal from the Dengfeng segment of the Central Orogenic Belt, North China Craton. Precambr. Res., 326 (2019), pp. 105-123
|
J. Deng, W.M. Yuan, E.J.M. Carranza, L.Q. Yang, C.M. Wang, L.Y. Yang, N.N. Hao. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: new evidence for multiple episodes of mineralization. J. Asian Earth Sci., 89 (3) (2014), pp. 10-27
|
S. Dey, A. Topno, Y. Liu, K.Q. Zong. Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum Craton, eastern India. Precambrian Res., 298 (2017), pp. 268-291
|
C.R. Diwu, Y. Sun, B.W. Si, M.J. Yan. Archean continental crustal growth and reworking of the North China Craton: constraints from zircon U-Pb age and Hf isotopic composition. Earth Sci. Rev., 248 (2024), Article 104624
|
C.Y. Dong, W.Q. Bai, H.Q. Xie, S.A. Wilde, Y.Q. Wang, S.J. Wang, D.Y. Liu, Y.S. Wan. Early Neoarchean oceanic crust in the North China Craton: evidence from geology, geochemistry and geochronology of greenstone belts in western Shandong. Lithos, 380–381 (2020), Article 105888
|
P. Duuring, J.O.S. Santos, I.O.H. Fielding, T.J. Ivanic, S.G. Hagemann, T. Angerer, Y.-J. Lu, M. Roberts, J. Choi. Dating hypogene iron mineralization events in Archean BIF at Weld Range, Western Australia: insights into the tectonomagmatic history of the northern margin of the Yilgarn Craton. Miner. Depos., 55 (2019), pp. 1-26
|
T. Elliott, T. Plank, A. Zindler, W. White, B. Bourdon. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res., 102 (1997), pp. 14991-15019
|
P. Feng, L. Wang, M. Brown, T.E. Johnson, A. Kylander-Clark, P.M. Piccoli. Partial melting of ultrahigh-pressure eclogite by omphacite-breakdown facilitates exhumation of deeply-subducted crust. Earth Planet. Sci. Lett., 554 (2021), Article 116664
|
R. Frei, A. Polat. Source heterogeneity for the major components of 3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett., 253 (2007), pp. 266-281
|
Y.S. Geng, F.L. Liu, C.H. Yang. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geol. Sin., 80 (2006), pp. 819-833
|
C.R. German, H. Elderfield. Application of the Ce anomaly as a paleoredox indicator, the ground rules. Paleoceanography, 5 (1990), pp. 823-833
|
C.R. German, B.P. Holliday, H. Elderfield. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta, 55 (1991), pp. 3553-3558
|
R. Guilbaud, I.B. Butler, R.M. Ellam. Abiotic pyrite formation produces a large Fe isotope fractionation. Science, 332 (2011), pp. 1548-1551
|
R.R. Guo, Z.H. Li, S.W. Liu, M.J. Wang, H. Bao, W. Wang, X. Huang, Y.X. Dou. Late Neoarchean geodynamic regime of the northeastern North China Craton: constraints from metamorphosed volcanic rocks of the Anshan-Benxi greenstone belt. Precambrian Res., 371 (2022), Article 106583
|
J.L. Han, J. Deng, Y. Zhang, J.G. Sun, Q.F. Wang, Y.M. Zhang, X.T. Zhang, Y. Liu, C.T. Zhao, F. Yang, L.L. Wang, Z.C. Lin. Au mineralization-related magmatism in the giant Jiapigou mining district of Northeast China. Ore Geol. Rev., 141 (2022), Article 104638
|
C.M. Han, W.J. Xiao, B.X. Su, P.A. Sakyi, S.J. Ao, J.E. Zhang, B. Wan, D.F. Song, Z.Y. Zhang, Z.M. Wang, J.X. Ding. Neoarchean algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen: Sims U-Pb age, origin and tectonic setting. Precambrian Res., 303 (2017), pp. 548-572
|
C.M. Han, W.J. Xiao, B.X. Su, P.A. Sakyi, S.J. Ao, J.E. Zhang, B. Wan, D.F. Song, Z.Y. Zhang, Z.M. Wang, M.C. Xie. Age and tectonic setting of the Jingangku Besshi-type volcanogenic massive sulfide deposit from the Northern Shanxi North China Craton. Precambrian Res., 350 (2020), Article 105873
|
G. Harshitha, C. Manikyamba, M. Santosh, C.X. Yang, A.K. Krishna, V.S. Sai, I.P. Reddy. Paleo–Mesoarchean sedimentary record in the Dharwar Craton, India: implications for Archean ocean oxygenation. Geosci. Front., 15 (2024), Article 101701
|
R. Haugaard, L. Ootes, R.A. Creaser, K.O. Konhauser. The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada. Geochim. Cosmochim. Acta., 194 (2016), pp. 34-56
|
A.W. Heard, N. Dauphas. Constraints on the coevolution of oxic and sulfidic ocean iron sinks from Archean-Paleoproterozoic iron isotope records. Geology, 48 (2020), pp. 358-362
|
H.D. Holland. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc B, 361 (2006), pp. 903-915
|
K.J. Hou, X.D. Ma, Y.H. Li, F. Liu, D. Han. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Res., 298 (2017), pp. 351-364
|
K.J. Hou, X.D. Ma, Y.H. Li, F. Liu, D. Han. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. J. Geochem. Explor., 197 (2019), pp. 60-69
|
J. Huang, X. Liu, Y. He, S. Shen, Z. Hou, S. Li, C. Li, L. Yao, J. Huang. The oxygen cycle and a habitable Earth. Sci. China Earth Sci., 64 (2021), pp. 511-528
|
D.L. Huston, P. Morant, F. Pirajon, B. Cummins, D. Baker, T.P. Mernaght. Paleoarchean mineral meposits of the Pilbara Craton: genesis, tectonic environment and comparisons with younger deposits. Dev. Precambri. Geol., 15 (2007), pp. 411-450
|
D.L. Huston, T.P. Mernagh, S.G. Hagemann, M.P. Doublier, M. Fiorentini, D.C. Champion, A.L. Jaques, K. Czarnota, R. Cayley, R. Skirrow, E. Bastrakov. Tectono-metallogenic systems — the place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geol. Rev., 76 (2016), pp. 168-210
|
D.L. Huston, P.D. Michael, E. Bruce, P. Sally, P. Steve, M.L. Patrick. Convergent margin metallogenic cycles: a window to secular changes in Earth's tectonic evolution. Earth Sci. Rev., 245 (2023), Article 104551
|
M. Jayananda, J.J. Peucat, D. Chardon, B.K. Rao, C.M. Fanning, F. Corfu. Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: constraints from SIMS U-Pb zircon geochronology and Nd isotopes. Precambrian Res., 227 (2013), pp. 55-76
|
P. Jian, A. Kröner, B.F. Windley, Q. Zhang, W. Zhang, L.Q. Zhang. Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton. Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Res., 222–223 (2012), pp. 230-254
|
K. Jiang, J. Wang, T. Kusky, A. Polat, B. Huang, L. Wang, S. Li, H. Deng, Y. Peng. Genesis of Archean to Paleoproterozoic banded iron formations in the North China Craton: geological and paleoenvironmental implications. Earth Sci. Rev., 250 (2024), Article 104710
|
Johnson, C., Beard, B., Weyer, S., 2020. The Ancient Earth, Iron Geochemistry: An Isotopic Perspective. Springer, pp. 215-360.
|
D. Kato, K. Aoki, T. Komiya, S. Yamamoto, Y. Sawaki, H. Asanuma, T. Sato, Y. Tsuchiya, K. Shozugawa, M. Matsuo, B.F. Windley. Constraints on the P-T conditions of high-pressure metamorphic rocks from the Inyoni shear zone in the mid-Archean Barberton Greenstone Belt South Africa. Precambrian Res., 315 (2018), pp. 1-18
|
R. Kerrich, A. Polat. Archean greenstone-tonalite duality: thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?. Tectonophysics., 415 (2006), pp. 141-165
|
K.O. Konhauser, S.V. Lalonde, N.J. Planavsky, E. Pecoits, T.W. Lyons, S.J. Mojzsis, O.J. Rouxel, M.E. Barley, C. Rosìere, P.W. Fralick. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature., 478 (2011), pp. 369-373
|
K.O. Konhauser, N.J. Planavsky, D.S. Hardisty, L.J. Robbins, T.J. Warchola, R. Haugaard, S.V. Lalonde, C.A. Partin, P.B.H. Oonk, H. Tsikos, T.W. Lyons, A. Bekker, C.M. Johnson. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev., 172 (2017), pp. 140-177
|
L.R. Kump, M.E. Barley. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448 (2007), pp. 1033-1036
|
F. Kurzweil, M. Wille, N. Gantert, N.J. Beukes, R. Schoenberg. Manganese oxide shuttling in pre-GOE oceans–evidence from molybdenum and iron isotopes. Earth Planet. Sci. Lett., 452 (2016), pp. 69-78
|
T.M. Kusky, A. Polat, B.F. Windley, K.C. Burke, J.F. Dewey, W.S.F. Kidd, S. Maruyama, J.P. Wang, H. Deng, Z.S. Wang, C. Wang, D. Fu, X.W. Li, H.T. Peng. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis, a record of outward growth of Precambrian continents. Earth Sci. Rev., 162 (2016), pp. 387-432
|
T.M. Kusky, J.P. Wang, L. Wang, B. Huang, W.B. Ning, D. Fu, H.T. Peng, H. Deng, A. Polat, Y.T. Zhong, G.Z. Shi. Ḿelanges through time: life cycle of the world’s largest Archean ḿelange compared with Mesozoic and Paleozoic subduction-accretion-collision ḿelanges. Earth Sci. Rev., 209 (2020), Article 103303
|
T.M. Kusky, L. Wang, P.T. Robinson, Y. Huang, R. Wirth, W. Ning, Y. Zhong, A. Polat. Ultra-high pressure inclusion in Archean ophiolitic podiform chromitite in ḿelange block suggests deep subduction on early Earth. Precambrian Res., 362 (2021), Article 106318
|
X.D. Lai, X. Yang. Characteristics of the banded iron formation (BIF) and its zircon chronology in Yangzhuang, western Shandong. Acta Petrol. Sin., 28 (2012), pp. 3612-3622
|
C.Y. Lan, X.P. Long. Redox-stratified seawater during the GOE: evidences from rare earth elemental and C-O isotopic compositions of Paleoproterozoic BIF and carbonate rocks from the Taihua Group, North China Craton. Ore Geol. Rev., 157 (2023), p. 105424
|
C.Y. Lan, X.P. Long, T.P. Zhao, M.G. Zhai. Mineralization and magmatic origin of the 2.1 Ga Zhaoanzhuang magnetite-apatite deposit, North China Craton: constraints on the formation of the Paleoproterozoic iron oxide-apatite deposits. Precambrian Res., 380 (2022), Article 106839
|
C.-T.-A. Lee, L.Y. Yeung, N.R. McKenzie, Y. Yokoyama, K. Ozaki, A. Lenardic. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci., 9 (6) (2016), pp. 417-424
|
K. Lei, Y.F. Wang, Q. Zhang, J.H. Zhang, W. Jin, P.X. Zheng, X.H. Li. Decoding the onset of ca. 3.8 Ga continental nuclei in Anshan, North China: a review integrated with 1:10,000 geological mapping, zircon U–Pb dating, and Si–O–Nd–Hf–W isotopes. Earth Sci. Rev., 247 (2023), Article 104606
|
L.X. Li, H.M. Li, Y.X. Xu, J. Chen, T. Yao, L.F. Zhang, X.Q. Yang, J.M. Liu. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: timing of BIF deposition and anatexis. J. Asian Earth Sci., 113 (2015), pp. 1017-1034
|
L.X. Li, H.M. Li, M.J. Liu, X.Q. Yang, J. Meng. Timing of deposition and tectonothermal events of Banded Iron Formations in the Anshan–Benxi Area, Liaoning Province, China: evidence from SHRIMP U-Pb zircon geochronology of the wall rocks. J. Asian Earth Sci., 129 (2016), pp. 276-293
|
Z.D. Li, X.G. Li, W. Zeng, C. Zhang, J.Y. Wang, S.S. Xue. Crustal- fluid origin for copper mineralization in the Zhongtiaoshan region: Evidence of He and Ar isotopes from fluid Inclusions in the Tongkuangyu and Hujiayu deposits. Acta Geologica Sinica, 93 (2019), pp. 2245-2259
|
J.J. Li, B.F. Shen, D.B. Mao. Geology and gold mineralization of the Qingyuan-Jipigou greenstone belt. Tianjin Science and Technology Publishing House (1995), pp. 1-132
|
Z.H. Li, X.K. Zhu, S.H. Tang. Fe isotope compositions of banded iron formation from Anshan-Benxi area: Constraints on the formation mechanism and Archean ocean environment. Acta Petrol. Sin., 28 (11) (2012), pp. 3545-3558
|
P. Liou, J.H. Guo, P. Peng, R.N. Mitchell, N. Jiang, M.G. Zhai, M.X. Mao. Crustal growth of the north China craton at ca. 2.5 Ga. Sci. Bull., 67 (2022), pp. 1553-1555
|
P. Liou, J.H. Guo, P. Peng, M.G. Zhai. Geological evolution of the North China Craton in the first billion years of Earth's history. Earth Sci. Rev., 247 (2023), Article 104608
|
X. Liu, H.R. Fan, M. Santosh, K.F. Yang, Z.J. Qiu, F.F. Hu, B.J. Wen. Geological and geochronological constraints on the genesis of the giant Tongkuangyu Cu deposit (Palaeoproterozoic), North China Craton. Int. Geol. Rev., 58 (2016), pp. 155-170
|
D.Y. Liu, A.P. Nutman, W. Compston, J.S. Wu, Q.H. Shen. Remnants of ≥3800 Ma crust in the Chinese Part of the Sino-Korean Craton. Geology, 20 (1992), pp. 339-342
|
D.Y. Liu, Y.S. Wan, J.S. Wu, S.A. Wilde, H.Y. Zhou, C.Y. Dong, X.Y. Yin. Eoarchean rocks and zircons in the North China Craton. M.J. Van Kranendonk, R.H. Smithies, V. Bennett (Eds.), Earth’s Oldest Rocks, Springer, Amsterdam (2007), pp. 251-273
|
L. Liu, X.Y. Yang. Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton: Geochemical and geochronological constraints. Precambrian Res, 261 (2015), pp. 217-233
|
L. Liu, X.Y. Yang, M. Santosh, G.J. Wang, S.J. Aulbach. Initial gold enrichment within a Neoarchean granite-greenstone belt: Evidence from ore-bearing and ore-barren samples in the Jiapigou deposits NE China. Ore Geol. Rev., 81 (2017), pp. 211-229
|
C. Liu, G. Zhao, F. Liu, J. Shi. 2.2 Ga magnesian andesites, Nb-enriched basaltandesites, and adakitic rocks in the Lüliang Complex: evidence for early Paleoproterozoic subduction in the North China Craton. Lithos, 208–209 (2014), pp. 104-117
|
C. Lu, J. Qian, C. Yin, J. Zhang, P. Gao, M. Guo. Characterising early Precambrian collisional orogens: a metamorphic perspective from the Lüliang Complex and the Trans-North China Orogen. Earth Sci. Rev., 245 (2023), Article 104566
|
T.W. Lyons, C.T. Reinhard, N.J. Planavsky. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506 (2014), pp. 307-315
|
X.D. Ma, H.R. Fan, M. Santosh, J.H. Guo. Chronology and geochemistry of Neoarchean BIF-type iron deposits in the Yinshan Block, North China Craton: implications for oceanic ridge subduction. Ore Geol. Rev., 63 (2014), pp. 405-417
|
Q. Ma, Y. Xu, X. Huang, J. Zheng, X. Ping, X. Xia. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths. Geochim. Cosmochim. Acta., 278 (2020), pp. 94-109
|
C. Manikyamba, R. Kerrich, T.C. Khanna, M. Satyanarayanan, A.K. Krishna. Enriched and depleted arc basalts, with Mg-andesites and adakites: a potential paired arc-back-arc of the 2.6 Ga Hutti greenstone terrane India. Geochim. Cosmochim. Acta., 73 (2009), pp. 1711-1736
|
C. Manikyamba, A. Saha, M. Santosh, S. Ganguly, M.R. Singh, D.S. Rao, M. Lingadevaru. Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: geochemical fingerprints of crustal growth at an active continental margin. Precambrian Res., 252 (2014), pp. 1-21
|
H. Martin, J.F. Moyen, M. Guitreau, J. Blichert-Toft, J.L. Le Pennec. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199 (2014), pp. 1-13
|
W.F. McDonough, S.-S. Sun. The composition of the Earth. Chem. Geol., 120 (1995), pp. 223-253
|
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Rev. Mineral. Geochem. 21, 169-200.
|
Meng, X.Y., Kontak, D., Richards, J.P., Mao, J.W., Marsh, J., 2021. Uncovering the Missing Magmatic Link for The Tongkuangyu Porphyry Cu Deposit, Trans-North China Orogen: Implication for Porphyry Cu Deposit Model and Exploration, Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits. In: Wang, A.S.a.R. (Ed.), Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards, Volume 1. Society of Economic Geologists, p. 121–135.
|
X.Y. Meng, J.P. Richards, J.W. Mao, H.S. Ye, S.A. DuFrane, R. Creaser, J. Marsh, J. Petrus. The tongkuangyu Cu deposit, Trans-North China orogen: a metamorphosed Paleoproterozoic porphyry Cu deposit. Econ. Geol., 115 (2020), pp. 51-77
|
I. Metcalfe. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of east Asian crustal fragments: the Korean peninsula in context. Gondwana Res., 9 (2006), pp. 24-46
|
L.C. Miao, Y.M. Qiu, W.M. Fan, F.Q. Zhang, M.G. Zhai. Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, Southern Jilin Province China. Ore Geol. Rev., 26 (2005), pp. 137-165
|
I. Moon, I. Lee, J.H. Seo, X.Y. Yang. Geochemical studies of banded iron formations (BIFs) in the North China Craton: a review. Geosciences Journal, 21 (2017), pp. 971-983
|
I. Moon, L. Insung, X.Y. Yang. Petrogenetic link between amphibolites and the banded iron formation of the Yishui region in the North China Craton: implications for Neoarchean plume tectonics. Int. Geol. Rev., 61 (2019), pp. 2328-2343
|
W.B. Ning, T. Kusky, J.P. Wang, L. Wang, H. Deng, A. Polat, B. Huang, H.T. Peng, P. Feng. From subduction initiation to arc–polarity reversal Life cycle of an Archean subduction zone from the Zunhua ophiolitic ḿelange North China Craton. Precambrian Res., 350 (2020), Article 105868
|
A.P. Nutman, Y.S. Wan, L.L. Du, C.R.L. Friend, C.Y. Dong, H.Q. Xie, W. Wang, H.Y. Sun, D.Y. Liu. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Res., 189 (2011), pp. 43-65
|
A.P. Nutman, V.C. Bennett, C.R.L. Friend. Seeing through the magnetite: reassessing Eoarchean atmosphere composition from Isua (Greenland) ≥3.7 Ga banded iron formations. Geosci. Front., 8 (2017), pp. 1233-1240
|
J. O’Neil, D. Francis, R.W. Carlson. Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J. Petrol., 52 (2011), pp. 985-1009
|
J.A. Pearce. Mantle preconditioning by melt extraction during flow: theory and petrogenetic implications. J. Petrol., 46 (2005), pp. 973-997
|
J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (2008), pp. 14-48
|
P. Peng, J.H. Guo, M.G. Zhai, B.F. Windly, T.S. Li, F. Liu. Genesis of the Hengling magmatic belt in the North China Craton: implications for Paleoproterozoic tectonics. Lithos, 148 (2012), pp. 27-44
|
P. Peng, C. Wang, X.P. Wang. Qingyuan high-grade granite-greenstone terrain in the Eastern North China Craton: root of a Neoarchaean arc. Tectonophysics, 662 (2015), pp. 7-21
|
Z.D. Peng, C.L. Wang, L.C. Zhang, M.T. Zhu, X.X. Tong. Geochemistry of metamorphosed volcanic rocks in the Neoarchean Qingyuan Greenstone Belt, North China Craton: implications for geodynamic evolution and VMS mineralization. Precambrian Res., 326 (2019), pp. 196-221
|
Z.D. Peng, C.L. Wang, S.W. Poulton, X.X. Tong, K.O. Konhauser, L.C. Zhang. Origin of the Neoarchean VMS-BIF metallogenic association in the Qingyuan Greenstone Belt, North China Craton: constraints from geology, geochemistry, and iron and multiple sulfur (δ33S, δ34S, and δ36S) isotopes. Econ. Geol., 117 (2022), pp. 1275-1298
|
Z.D. Peng, C.L. Wang, L.C. Zhang, M.G. Zhai. Decoupled neodymium and hafnium isotopes in seawater as insights into the Late Neoarchean weathering process. Precambrian Res., 397 (2023), Article 107170
|
N. Planavsky, A. Bekker, O. Rouxel, A. Knudsen, T.W. Lyons. Rare earth element and yttrium compositions of Archean and Paleoproterozoic iron formations revisited, new perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta., 74 (2010), pp. 6387-6405
|
A. Polat, T.M. Kusky, J.H. Li, B. Fryer, R. Kerrich, K. Patrick. Precambrian geology - geochemistry of Neoarchean (Ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan Greenstone Belt, Central Orgenic Belt, North China Craton: Implications for geodynamic setting and continental growth. Geol. Soc. Am. Bull., 117 (2005), pp. 1387-1399
|
Y. Qian, F.Y. Sun, Y.J. Zhang, L. Huo. Metallogenic and metamorphic age of the Hongtoushan copper-zinc massive sulfide deposit, Liaoning province China. Resour. Geol., 64 (2014), pp. 17-24
|
Z.J. Qiu, H.R. Fan, X. Liu, K.F. Yang, F.F. Hu, W.G. Xu, B.J. Wen. Mineralogy, chalcopyrite Re-Os geochronology and sulfur isotope of the Hujiayu Cu deposit in the Zhongtiao Mountains, North China Craton: implications for a Paleoproterozoic metamorphogenic copper mineralization. Ore Geol. Rev., 78 (2016), pp. 252-267
|
Z.J. Qiu, H.R. Fan, K.F. Yang, L.H. Li. Cobalt sources and enrichment processes of the Paleoproterozoic sedimentary rock: Hosted Cu-Co deposits in the Zhongtiao Mountains. Acta Petrol. Sin., 39 (2023), pp. 1019-1029
|
B. Rasmussen, I.R. Fletcher, A. Bekker, J.R. Muhling, C.J. Gregory, A.M. Thorne. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature, 484 (2012), pp. 498-501
|
L.D. Ren, Y.S. Geng, L.L. Du, Y.B. Wang, J.J. Guo. SHRIMP data on zircons from the Wanzi series: Constraints on the rock formation time and implications of migmatization at 2.1-2.0 Ga in the Fuping Complex, North China Craton. J. Asian Earth Sci., 72 (2013), pp. 203-215
|
P. Ren, H.Q. Xie, S.J. Wang, A. Nutman, C.Y. Dong, S.J. Liu, S.W. Xie, X.C. Che, Z.Y. Song, M.Z. Ma, D.Y. Liu, Y.S. Wan. A ca. 2.60 Ga tectono-thermal event in Western Shandong Province, North China Craton from zircon U-Pb-O isotopic evidence: plume or convergent plate boundary process. Precambr. Res., 281 (2016), pp. 236-252
|
R.L. Rudnick, S. Gao. 4.1 - Composition of the continental crust. H.D.H.K. Turekian (Ed.), Treatise on Geochemistry (second Edition), Elsevier, Oxford (2014), pp. 1-51
|
M. Santosh, D.I. Groves. Global metallogeny in relation to secular evolution of the Earth and supercontinent cycles. Gondwana Res., 107 (2022), pp. 395-422
|
M. Santosh, Q.Y. Yang, X. Teng, L. Tang. Paleoproterozoic crustal growth in the North China Craton: evidence from the Lüliang Complex. Precambrian Res., 263 (2015), pp. 197-231
|
M. Santosh, X.M. Teng, X.F. He, L. Tang, Q.Y. Yang. Discovery of Neoarchean suprasubduction zone ophiolite suite from Yishui Complex in the North China Craton. Gondwana Res., 38 (2016), pp. 1-27
|
S. Severmann, C. Johnson, B. Beard, C. German, H. Edmonds, H. Chiba, D. Green. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°140’N. Earth Planet. Sci. Lett., 225 (2004), pp. 63-76
|
F.N. Shen. The discovery of unconformity within the Taihua Group and definition of its stratigraphic sequence in the Lushan area. Henan. Reg. Geol. China., 2 (1994), pp. 135-140
|
Q.H. Shen, Y.S. Geng, B. Song, Y.S. Wan. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks, and Qinling-Dabie Orogenic Belt. Acta Geol. Sin., 79 (2005), pp. 616-627
|
S. Sheppard, B. Krapez, J.W. Zi, B. Rasmussen, I. Fletcher. SHRIMP U–Pb zircon geochronology establishes that Banded Iron Formations are not chronostratigraphic markers across Archean greenstone belts of the Pilbara Craton. Precambrian Res., 292 (2017), pp. 290-304
|
E.R. Sholkovitz, T. Shaw, D.L. Schneider. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim. Cosmochim. Acta., 56 (1992), pp. 3389-3402
|
R.H. Smithies, T.J. Ivanic, J.R. Lowrey, P.A. Morris, S.J. Barnes, S. Wyche, Y. Lu. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett., 487 (2018), pp. 106-116
|
C.J. Spencer, J.B. Murphy, C.L. Kirkland, Y.B. Liu, R.N. Mitchell. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nat. Geosci., 11 (2018), pp. 97-101
|
J.Y. Sun, S.K. Ji, Y.Q. Zhen. The Copper Deposits in the Zhongtiao Rift. Geological Publishing House, Beijing (1995), pp. 84-140
|
J.G. Sun, H.Y. Li, X.H. Liu, K.Q. Xie, B.L. Li, D.W. Yin. Alteration and mineralization characteristics of Tongkuangyu copper deposit in Zhongtiao Mountain, Shanxi Province. Mineral Deposits, 33 (2014), pp. 1306-1324
|
S.-S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ., 42 (1989), pp. 313-345
|
T. Sun, D.H. Wang, Z.Z. Qian, Y. Fu, Z.H. Chen, D.B. Lou. A preliminary review of the metallogenic regularity of nickel deposits in China. Acta Geol. Sin. -Engl. Ed., 89 (2015), pp. 1375-1397
|
E.D. Swanner, T. Bayer, W. Wu, L. Hao, M. Obst, A. Sundman, J.M. Byrne, F.M. Michel, I.C. Kleinhanns, A. Kappler, R. Schoenberg. Iron isotope fractionation during Fe (II) oxidation mediated by the oxygen-producing marine cyanobacterium Synechococcus PCC 7002. Environ. Sci. Tech., 51 (9) (2017), pp. 4897-4906
|
M. Tang. Composition of the Earth’s Crust. D. Alderton, S.A. Elias (Eds.), Encyclopedia of Geology (2nd edition), Academic Press, Oxford (2020), pp. 178-186
|
H.S. Tang, Y.J. Chen, M. Santosh, T. Yang. REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: implications for seawater compositional change during the Great Oxidation Event. Precambrian Res., 227 (2013), pp. 316-336
|
L. Tang, M. Santosh, X.M. Teng. Paleoproterozoic (ca. 2.1-2.0 Ga) arc magmatism in the Fuping complex: implications for the tectonic evolution of the Trans-north China Orogen. Precambrian Res., 268 (2015), pp. 16-32
|
L. Tang, M. Santosh, R.M. Palin, L.H. Jia, H.W. Cao, Y.M. Sheng. Long-lived (>100 m.y.) postcollisional exhumation and cooling in the Paleoproterozoic Trans–North China orogen: Evidence from phase equilibria modeling and monazite petrochronology of granulite-facies metapelites in the Fuping Complex. Geol. Soc. Am. Bull., 135 (2023), pp. 2331-2347
|
X.X. Tong, C.L. Wang, Z.D. Peng, Y.H. Li, W.D. Hao, K. Mänd, L.J. Robbins, L.C. Zhang, Q. Ke, M.G. Zhai, K.O. Konhauser. Depositional and environmental constraints on the Late Neoarchean Dagushan deposit (Anshan-Benxi area, North China craton): An Algoma type banded iron formation. Econ. Geol., 116 (2021), pp. 1575-1597
|
M.J. Van Kranendonk, A.H. Hickman, R.H. Smithies, D.C. Champion. Paleoarchean development of a continental nucleus: the East Pilbara terrane of the Pilbara craton, Western Australia. M.J. Van Kranendonk, R.H. Smithies, V. Bennet (Eds.), Earth’s Oldest Rocks, Elsevier, Amsterdam (2007), pp. 307-337
|
Y.S. Wan, B. Song, Y.S. Geng, D.Y. Liu. Geochemical characteristics of Archean basement in the Fushun-Qingyuan area, Northern Liaoning Province and its geological significance. Geological Review, 51 (2005), pp. 128-137
|
Y.S. Wan, D.Y. Liu, S.Y. Wang, X. Zhao, C.Y. Dong, H.Y. Zhou, X.Y. Yin, C.X. Yang, Z.L. Gao. Early Precambrian crustal evolution in the Dengfeng area, Henan province (eastern China): constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geol. Sin., 83 (2009), pp. 982-999
|
Y.S. Wan, C.Y. Dong, W. Wang, H.Q. Xie, D.Y. Liu. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of north China craton: evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta Geol. Sinica, 84 (2010), pp. 91-104
|
Y.S. Wan, D.Y. Liu, S.J. Wang, E.X. Yang, W. Wang, C.Y. Dong, H.Y. Zhou, L.L. Du, Y.H. Yang, C.R. Diwu. ∼2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from U–Pb dating and Hf isotopic composition of zircon. Precambrian Res., 186 (2011), pp. 169-180
|
Y.S. Wan, C.Y. Dong, H.Q. Xie, S.J. Wang, M.C. Song, Z.Y. Xu, S.Y. Wang, H.Y. Zhou, M.Z. Ma, D.Y. Liu. Formation ages of early Precambrian BIFs in the North China Craton, SHRIMP zircon U-Pb dating. Acta Geol. Sin., 86 (2012), pp. 1447-1478
|
Y.S. Wan, C.Y. Dong, S.J. Wang, A. Kröner, H.Q. Xie, M.Z. Ma, H.Y. Zhou, S.W. Xie, D.Y. Liu. Middle Neoarchean magmatism in western Shandong, North China Craton: SHRIMP zircon dating and LA-ICP-MS Hf isotope analysis. Precambr. Res., 255 (2014), pp. 865-884
|
Y.S. Wan, M.Z. Ma, C.Y. Dong, H.Q. Xie, S.W. Xie, P. Ren, D.Y. Liu. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes. Am. J. Sci., 315 (2015), pp. 620-670
|
Y.S. Wan, C.Y. Dong, H.Q. Xie, A.P. Nutman, S.W. Xie, Y. Wang, D.Y. Liu. SHRIMP U-Pb zircon dating and geochemistry of the 3.8–3.1 Ga Hujiamiao complex in Anshan (North China Craton) and the significance of the trondhjemites for early crustal genesis. Precambrian Res., 388 (2023), Article 106975
|
C.L. Wang, L.C. Zhang, C.Y. Lan, Y.P. Dai. Petrology and geochemistry of the Wangjiazhuang Banded Iron Formation and associated supracrustal rocks from the Wutai Greenstone Belt in the North China Craton: implications for their origin and tectonic setting. Precambrian Res., 255 (2014), pp. 603-626
|
C.L. Wang, L.J. Robbins, N.J. Planavsky, N.J. Beukes, L.A. Patry, S.V. Lalonde, M.A. Lechte, D. Asael, C.T. Reinhard, L.C. Zhang, K.O. Konhauser. Archean to Early Paleoproterozoic Iron Formations document a transition in iron oxidation mechanisms. Geochim. Cosmochim. Acta., 343 (2023), pp. 286-303
|
J.Y. Wang, X.P. Long. Early Paleoproterozoic TTG gneisses and potassic granitoids in the southern Trans-North China Orogen: key constraints on the tectonic setting during the tectono-magmatic lull and the initiation of plate tectonics. Earth Sci. Rev., 250 (2024), Article 104713
|
W. Wang, E.X. Yang, M.G. Zhai, S.J. Wang, M. Santosh, L.L. Du, H.Q. Xie, B. Lv, Y.S. Wan. Geochemistry of ∼ 2.7 Ga basalts from Taishan area: Constraints on the evolution of early Neoarchean granite-greenstone belt in western Shandong Province China. Precambr. Res., 224 (2013), pp. 94-109
|
X. Wang, W.B. Zhu, Y.F. Zheng. Geochemical constraints on the nature of late Archean basaltic-andesitic magmatism in the North China Craton. Earth Sci. Rev., 230 (2022), Article 104065
|
M.R. Warke, T. Di Rocco, A.L. Zerkle, A. Lepland, A.R. Prave, A.P. Martin, Y. Ueno, D.J. Condon, M.W. Claire. The Great Oxidation Event preceded a Paleoproterozoic ‘‘snowball Earth”. Proc. Natl. Acad. Sci. USA, 117 (2020), pp. 13314-13320
|
C. Wei, J. Qian, X. Zhou. Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, north China Craton. Geosci. Front., 5 (2014), pp. 485-497
|
R. Wicander, J.S. Monroe. Historical Geology – Evolution of Earth and Life through Time. Cengage Learning, Boston (2016), p. 450
|
S.A. Wilde, P.A. Cawood, K.Y. Wang, A. Nemchin. Granitoid evolution in the late Archean Wutai Complex: North China Craton. J. Asian Earth Sci., 24 (2005), pp. 597-613
|
H.Y. Wu, X.L. Niu, L.C. Zhang, F. Pirajno, H.B. Luo, F. Qin, M.L. Cui, C.L. Wang, M. Qi. Geology and geochemistry of the Macheng Algoma-type banded iron-formation, North China Craton: Constraints on mineralization events and genesis of high-grade iron ores. J. Asian Earth Sci., 113 (2015), pp. 1179-1196
|
F.Y. Wu, J.H. Yang, X.M. Liu, T.S. Li, L.W. Xie, Y.H. Yang. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chin. Sci. Bull., 50 (2005), pp. 2473-2480
|
M. Wu, G. Zhao, M. Sun, S. Li, Z. Bao, P.Y. Tam, P.R. Eizenhöefer, Y. He. Zircon U–Pb geochronology and Hf isotopes of major lithologies from the Jiaodong terrane: Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos, 190 (2013), pp. 71-84
|
X.P. Xia, M. Sun, G.C. Zhao, F.Y. Wu, P. Xu, J. Zhang, Y.H. He, J.H. Zhang. U-Pb age and Hf isotope study of detrital zircons from the Wanzi Supracrustals: Constraints on the tectonic setting and evolution of the Fuping Complex Trans-North China Orogen. Acta Petrol. Sin., 80 (2006), pp. 844-863
|
S.J. Xie, Z.G. Dong, J.B. Shang, X. Zhang, Z.D. Peng, L. Wen, L.C. Zhang, Y.L. Shi, L. Robbins, C.L. Wang. Age and genesis of the Tongshan banded iron formation in the Zhongtiao region North China Craton. Ore Geol. Rev., 164 (2024), Article 105845
|
S.C. Xue, J. Deng, Q.F. Wang, W. Xie, Y.N. Wang. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: the role of reduction process in ore genesis. Geochim. Cosmochim. Acta., 306 (2021), pp. 210-225
|
X.Y. Yang, L. Liu, I.S. Lee, B.H. Wang, Z.B. Du, Q.C. Wang, Y.X. Wang, W.D. Sun. A review on the Huoqiu banded iron formation (BIF), southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geol. Rev., 63 (2014), pp. 418-443
|
Q.Y. Yang, M. Santosh. The building of an Archean microcontinent: Evidence from the North China Craton. Gondwana Res., 50 (2017), pp. 3-37
|
F.J. Yu. The Study of Metallogenic Model and Prospecting Pattern of Hongtoushan-type Deposit. Northeastern University (2006)
|
J.H. Yu, D.Z. Wang, C.Y. Wang. Ages of the Lüliang group and its main metamorphism in the Lüliang mountains, Shanxi—evidence from single-grain zircon U–Pb ages. Geological Review, 43 (1997), pp. 403-408
|
T. Zeng, L. Tang, H.H. Wang, M. Santosh, Y.M. Sheng. The Paleoproterozoic Zhaigou banded iron formation in the Fuping Complex, North China Craton: geochemistry, geochronology and implications for genesis and tectonic setting. Ore Geol. Rev., 154 (2023), Article 105314
|
M.G. Zhai. Tectonic evolution and metallogenesis of North China Craton. Miner. Deposit, 39 (2010), pp. 24-36
|
M.G. Zhai. Cratonization and the ancient North China continent: a summary and review. Sci. China Earth Sci., 54 (2011), pp. 1110-1120
|
M.G. Zhai. Multi-stage crustal growth and cratonization of the North China Craton. Geosci. Front., 5 (2014), pp. 457-469
|
M.G. Zhai. Radical change in tectonic regime and paleo-environment at the end of Neoarchean evidenced by a unique metal co-existing deposit. Sci. Bull., 67 (23) (2022), pp. 2438-2448
|
M.G. Zhai, W.J. Liu. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Res., 122 (2003), pp. 183-199
|
M.G. Zhai, J.H. Guo, W.J. Liu. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J. Asian Earth Sci., 24 (2005), pp. 547-561
|
M.G. Zhai, M. Santosh. The early Precambrian odyssey of North China Craton: a synoptic overview. Gondwana Res., 20 (2011), pp. 6-25
|
M.G. Zhai, M. Santosh. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res., 24 (2013), pp. 275-297
|
M.G. Zhai, X.Y. Zhu. Corresponding main metallogenic epochs to key geological events in the North China Craton: an example for secular changes in the evolving Earth. M.G. Zhai, Y. Zhao, T.P. Zhao (Eds.), Main Tectonic Events and Metallogeny of the North China Craton, Springer, Singapor (2016), pp. 1-28
|
M.G. Zhai, X.Y. Zhu, Y.Y. Zhou, L. Zhao, L.G. Zhou. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. J. Asian Earth Sci., 194 (2020), Article 104169
|
M.G. Zhai, L. Zhao, X.Y. Zhu, Y.Y. Zhou, P. Peng, J.H. Guo, Q.L. Li, T.P. Zhao, J.S. Lu, X.H. Li. Late Neoarchean magmatic–metamorphic event and crustal stabilization in the North China Craton. Am. J. Sci., 321 (2021), pp. 206-234
|
G.W. Zhang, Y.B. Bai, Y. Sun. Composition and evolution of the Archean crust in central Henan China. Precambrian Res., 27 (1985), pp. 7-35
|
L.C. Zhang, Y.P. Dai, C.L. Wang, L. Liu, M.T. Zhu. Age, material sources and formation setting of Precambrian BIFs iron deposits in Anshan-Benxi area. J. Earth Sci. Environ., 36 (2014), pp. 1-15
|
J.Q. Zhang, S.R. Li, M. Santosh, J. Lu, C.L. Wang. Metallogenesis of Precambrian gold deposits in the Wutai Greenstone Belt: constrains on the tectonic evolution of the North China Craton. Geosci. Front., 9 (2018), pp. 317-333
|
L.C. Zhang, Z.D. Peng, M.G. Zhai, X.X. Tong, M.T. Zhu, C.L. Wang. Tectonic setting and genetic relationship between BIF and VMS -in the Qingyuan Neoarchean greenstone belt Northern North China Craton. Earth Sci., 45 (2020), pp. 1-16
|
A.P. Zhang, T. Sun, Z.F. Zhao, J.X. Zhou, W.T. Li, Q.J. Qi, X.Z. Wei. Genesis of the Neoarchean subduction-related Taoke Ni–Cu-(PGE) sulphide deposit in the North China Craton: constraints from Os–S isotopes and PGE geochemistry. Geol. J., 56 (9) (2021), pp. 4888-4903
|
L.C. Zhang, C.L. Wang, M.T. Zhu, H. Huang, Z.D. Peng. Neoarchean Banded Iron Formations in the North China Craton, Geology, Geochemistry, and Its Implications. M. Zhai, Y. Zhao, T. Zhao (Eds.), Main Tectonic Events and Metallogeny of the North China Craton, Springer, Singapore (2016), pp. 85-103
|
R.Y. Zhang, M.G. Zhai, Y. Zhao. Geochronology, geochemistry and isotopic composition of the 2.18–2.16 Ga granitoid rocks from the Northwestern Zhongtiao Mountain Region: Implications for the middle Paleoproterozoic tectonic evolution of the Southern North China Craton. Lithos, 440–441 (2023), Article 107020
|
X.J. Zhang, L.C. Zhang, P. Xiang, B. Wan, F. Pirajno. Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: constraints on the ore-forming age and tectonic setting. Gondwana Res., 20 (2011), pp. 137-148
|
G.C. Zhao. Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion. Acta Petrol. Sin., 25 (2009), pp. 1772-1792
|
G.C. Zhao, P.A. Cawood, S.Z. Li, S.A. Wilde, M. Sun, J. Zhang, Y.H. He, C.Q. Yin. Amalgamation of the North China Craton: key issues and discussion. Precambrian Res., 222–223 (2012), pp. 55-76
|
G.C. Zhao, M. Sun, S.A. Wilde, S.Z. Li. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res, 136 (2005), pp. 177-202
|
G.C. Zhao, M.G. Zhai. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res., 23 (2013), pp. 1207-1240
|
G.C. Zhao, A. Kröner, S.A. Wilde. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen. Geol. Mag., 144 (2007), pp. 753-775
|
G.C. Zhao, X.H. Li, P. Peng, J.P. Wang. Early plate tectonics and evolution of continental crust in the North China craton: Editorial preface. Earth Sci. Rev., 252 (2024), Article 104748
|
G.C. Zhao, G.W. Zhang. Origin of continents. Acta Geologica Sinica., 95 (2021), pp. 1-19
|
M.T. Zheng, L.C. Zhang, C.L. Wang, M.T. Zhu, Z.Q. Li, Y.T. Wang. Formation age and origin of the Xingshan BIF type iron deposit in eastern Heibei Province. Acta Petrol. Sin., 31 (2015), pp. 1636-1652
|
S.T. Zhou. Geology of the BIF in Anshan-Benxi Area. Geological Publishing House, Beijing (1994), pp. 1-277
|
T.H. Zhou, R.J. Goldfarb, N.G. Phillips. Tectonics and distribution of gold deposits in China - an overview. Miner. Depos., 37 (2002), pp. 249-282
|
R.X. Zhu, G.C. Zhao, W.J. Xiao, L. Chen, Y.J. Tang. Origin, accretion, and reworking of continents. Rev. Geophys., 59 (3) (2021), Article e2019RG000689
|
/
〈 |
|
〉 |