Black carbon aerosols impact snowfall over the Tibetan Plateau

Ye Zhou, Junhua Yang, Shichang Kang, Yuling Hu, Xintong Chen, Mian Xu, Mengmeng Ma

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101978.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101978. DOI: 10.1016/j.gsf.2024.101978

Black carbon aerosols impact snowfall over the Tibetan Plateau

Author information +
History +

Abstract

Snowfall is the primary form of cold-season precipitation over the Tibetan Plateau (TP), crucial for the maintenance of glaciers and snow cover, affecting regional climates and water resources availability. Through an integrative analysis of observations, numerical simulations, and statistical analyses, we found that the spatiotemporal distribution of snowfall across the TP is significantly influenced by black carbon (BC) aerosols from South Asia and the TP. BC affects the snowfall process through multiple mechanisms. Specifically, BC significantly raises atmospheric temperature over the TP, thereby reducing snowfall, particularly in the central TP during autumn, with reductions reaching approximately − 9 mm water equivalent month−1. Moreover, BC enhances cold-season moisture transport from the Bay of Bengal, increasing moisture flux in the southeastern TP and thereby augmenting snowfall in that area by up to 5 mm water equivalent month−1. This study elucidates the complex impact of BC on the spatial–temporal snowfall patterns across the TP and provides important insights into the sustainable development of water resources in the region amid ongoing climate change.

Keywords

Tibetan Plateau / Black carbon / Snowfall / Model simulation / Impact mechanism

Cite this article

Download citation ▾
Ye Zhou, Junhua Yang, Shichang Kang, Yuling Hu, Xintong Chen, Mian Xu, Mengmeng Ma. Black carbon aerosols impact snowfall over the Tibetan Plateau. Geoscience Frontiers, 2025, 16(2): 101978 https://doi.org/10.1016/j.gsf.2024.101978

References

T. Andrews, P.M. Forster, O. Boucher, N. Bellouin, A. Jones. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37 (14) (2010), Article L14701,
CrossRef Google scholar
T.P. Barnett, R. Preisendorfer. Origins and levels of monthly and seasonal forecast skill for United-States surface air temperatures determined by canonical correlation-analysis. Mon. Weather Rev., 115 (1987), pp. 1825-1850,
CrossRef Google scholar
A.C.M. Beljaars. The parametrization of surface fluxes in large-scale models under free-convection. Q. J. R. Meteorolog. Soc., 121 (1995), pp. 255-270,
CrossRef Google scholar
S. Bibi, L. Wang, X.P. Li, J. Zhou, D.L. Chen, T.D. Yao. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol., 38 (2018), pp. E1-E17,
CrossRef Google scholar
T. Bolch, A. Kulkarni, A. Kääb, C. Huggel, F. Paul, J.G. Cogley, H. Frey, J.S. Kargel, K. Fujita, M. Scheel, S. Bajracharya, M. Stoffel. The state and fate of Himalayan glaciers. Science, 336 (2012), pp. 310-314,
CrossRef Google scholar
T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, C.S. Zender. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. D: Atmos., 118 (2013), pp. 5380-5552,
CrossRef Google scholar
R.R. Buchholz, L.K. Emmons, S. Tilmes, T.C.D. Team. CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions. UCAR/NCAR - Atmospheric Chemistry Observations and Modeling Laboratory (2019),
CrossRef Google scholar
A. Chatterjee, M. Dutta, A. Ghosh, S.K. Ghosh, A. Roy. Relative role of black carbon and sea-salt aerosols as cloud condensation nuclei over a high altitude urban atmosphere in eastern Himalaya. Sci. Total Environ., 742 (2020), Article 140468,
CrossRef Google scholar
X.T. Chen, S.C. Kang, Z.Y. Cong, J.H. Yang, Y.M. Ma. Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmos. Chem. Phys., 18 (2018), pp. 12859-12875,
CrossRef Google scholar
P.F. Chen, S.C. Kang, C.L. Li, Q.G. Zhang, J.M. Guo, L. Tripathee, Y.A. Zhang, G. Li, C. Gul, Z.Y. Cong, X. Wan, H.W. Niu, A.K. Panday, M. Rupakheti, Z.M. Ji. Carbonaceous aerosol characteristics on the third pole: a primary study based on the atmospheric pollution and cryospheric change (APCC) network. Environ. Pollut., 253 (2019), pp. 49-60,
CrossRef Google scholar
J. Ching, N. Riemer, M. West. Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions. J. Geophys. Res. D: Atmos., 121 (2016), pp. 5990-6013,
CrossRef Google scholar
Z. Cong, S. Kang, K. Kawamura, B. Liu, X. Wan, Z. Wang, S. Gao, P. Fu. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos. Chem. Phys., 15 (2015), pp. 1573-1584,
CrossRef Google scholar
A.S. Daloz, M. Mateling, T. L'Ecuyer, M. Kulie, N.B. Wood, M. Durand, M. Wrzesien, C.W. Stjern, A.P. Dimri. How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses. Cryosphere, 14 (2020), pp. 3195-3207,
CrossRef Google scholar
S. Debnath, G. Govardhan, R. Jat, G. Kalita, P. Yadav, C. Jena, R. Kumar, S.D. Ghude. Black carbon emissions and its impact on the monsoon rainfall patterns over the Indian subcontinent: Insights into localized warming effects. Atmos. Environ., X 22 (2024), Article 100257,
CrossRef Google scholar
H.J. Deng, N.C. Pepin, Y.N. Chen. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. d: Atmos., 122 (2017), pp. 7323-7341,
CrossRef Google scholar
A.M. Duan, Z.X. Xiao. Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep., 5 (2015), Article 13711,
CrossRef Google scholar
U. Dusek, G.P. Reischl, R. Hitzenberger. CCN activation of pure and coated carbon black particles. Environ. Sci. Technol., 40 (2006), pp. 1223-1230,
CrossRef Google scholar
G.A. Grell, S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, B. Eder. Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39 (2005), pp. 6957-6975,
CrossRef Google scholar
J.P. Huang, J.R. Ma, X.D. Guan, Y. Li, Y.L. He. Progress in semi-arid climate change studies in China. Adv. Atmos. Sci., 36 (2019), pp. 922-937,
CrossRef Google scholar
M.J. Iacono, J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. d: Atmos., 113 (2008), Article D13103,
CrossRef Google scholar
W.W. Immerzeel, A.F. Lutz, M. Andrade, A. Bahl, H. Biemans, T. Bolch, S. Hyde, S. Brumby, B.J. Davies, A.C. Elmore, A. Emmer, M. Feng, A. Fernández, U. Haritashya, J.S. Kargel, M. Koppes, P.D.A. Kraaijenbrink, A.V. Kulkarni, P.A. Mayewski, S. Nepal, P. Pacheco, T.H. Painter, F. Pellicciotti, H. Rajaram, S. Rupper, A. Sinisalo, A.B. Shrestha, D. Viviroli, Y. Wada, C. Xiao, T. Yao, J.E.M. Baillie. Importance and vulnerability of the world's water towers. Nature, 577 (2020), pp. 364-369,
CrossRef Google scholar
Z. Ji. Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv. Clim. Change Res., 7 (2016), pp. 139-144,
CrossRef Google scholar
R. Jia, Y.Z. Liu, B. Chen, Z.J. Zhang, J.P. Huang. Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123 (2015), pp. 210-219,
CrossRef Google scholar
S.C. Kang, Y.W. Xu, Q.L. You, W.A. Flügel, N. Pepin, T.D. Yao. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5 (1) (2010), Article 015101,
CrossRef Google scholar
S.C. Kang, P.F. Chen, C.L. Li, B. Liu, Z.Y. Cong. Atmospheric aerosol elements over the Inland Tibetan Plateau: Concentration, seasonality, and transport. Aerosol Air Qual. Res., 16 (2016), pp. 789-800,
CrossRef Google scholar
S.C. Kang, Q.G. Zhang, Y. Qian, Z.M. Ji, C.L. Li, Z.Y. Cong, Y.L. Zhang, J.M. Guo, W.T. Du, J. Huang, Q.L. You, A.K. Panday, M. Rupakheti, D.L. Chen, Ö. Gustafsson, M.H. Thiemens, D.H. Qin. Linking atmospheric pollution to cryospheric change in the third pole region: current progress and future prospects. Natl. Sci. Rev., 6 (2019), pp. 796-809,
CrossRef Google scholar
S.C. Kang, Y.L. Zhang, P.F. Chen, J.M. Guo, Q.G. Zhang, Z.Y. Cong, S. Kaspari, L. Tripathee, T.G. Gao, H.W. Niu, X.Y. Zhong, X.T. Chen, Z.F. Hu, X.F. Li, Y. Li, B. Neupane, F.P. Yan, D. Rupakheti, C. Gul, W. Zhang, G.M. Wu, L. Yang, Z.Q. Wang, C.L. Li. Black carbon and organic carbon dataset over the third pole. Earth Syst. Sci. Data, 14 (2022), pp. 683-707,
CrossRef Google scholar
E.D. Kireeva, O.B. Popovicheva, N.M. Persiantseva, T.D. Khokhlova, N.K. Shonija. Effect of black carbon particles on the efficiency of water droplet freezing. Colloid J., 71 (2009), pp. 353-359,
CrossRef Google scholar
R.R. Kumar, V.K. Soni, M.K. Jain. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci. Total Environ., 723 (2020), Article 138060,
CrossRef Google scholar
K.M. Lau, M.K. Kim, K.M. Kim. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan plateau. Clim. Dyn., 26 (2006), pp. 855-864,
CrossRef Google scholar
W. Lau, M. Kim, K. Kim, W. Lee. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5 (2010), Article 025204,
CrossRef Google scholar
C.L. Li, C. Bosch, S.C. Kang, A. Andersson, P.F. Chen, Q.G. Zhang, Z.Y. Cong, B. Chen, D.H. Qin, Ö. Gustafsson. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat. Commun., 7 (2016), Article 12574,
CrossRef Google scholar
Y.T. Li, Y.H. Gao, G.X. Chen, G.Y. Wang, M. Zhang. Decomposition and reduction of WRF-modeled wintertime cold biases over the Tibetan Plateau. Clim. Dyn., 62 (2024), pp. 4189-4203,
CrossRef Google scholar
J. Li, K. von Salzen, Y. Peng, H. Zhang, X. Liang. Evaluation of black carbon semi-direct radiative effect in a climate model. J. Geophys. Res. D: Atmos., 118 (2013), pp. 4715-4728,
CrossRef Google scholar
Y.R. Lun, L. Liu, L. Cheng, X.P. Li, H. Li, Z.X. Xu. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol., 41 (2021), pp. 3994-4018,
CrossRef Google scholar
G.A. Meehl, J.M. Arblaster, W.D. Collins. Effects of black carbon aerosols on the Indian monsoon. J. Clim., 21 (2008), pp. 2869-2882,
CrossRef Google scholar
Y. Ming, V. Ramaswamy, G. Persad. Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37 (2010), Article L13701,
CrossRef Google scholar
A.K. Mishra, M. Rafiq. Analyzing snowfall variability over two locations in Kashmir, India in the context of warming climate. Dyn. Atmos. Oceans, 79 (2017), pp. 1-9,
CrossRef Google scholar
H. Morrison, G. Thompson, V. Tatarskii. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev., 137 (2009), pp. 991-1007,
CrossRef Google scholar
A. Muhlbauer, U. Lohmann. Sensitivity studies of aerosol-cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66 (2009), pp. 2517-2538,
CrossRef Google scholar
P.A. O’Gorman. Contrasting responses of mean and extreme snowfall to climate change.. Nature, 512 (7515) (2014), pp. 416-418,
CrossRef Google scholar
P. Peng, L. Zhu. Observations of land surface processes of the Tibetan Plateau based on the field stations network. Science & Technology Review, 35 (2017), pp. 97-102
A.F. Prein, A.J. Heymsfield. Increased melting level height impacts surface precipitation phase and intensity. Nat. Clim. Change, 10 (2020), pp. 771-776,
CrossRef Google scholar
V. Ramanathan, G. Carmichael. Global and regional climate changes due to black carbon. Nat. Geosci., 1 (2008), pp. 221-227,
CrossRef Google scholar
V. Ramanathan, M.V. Ramana. Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys., 162 (2005), pp. 1609-1626,
CrossRef Google scholar
B. Romshoo, M.A. Bhat, G. Habib. Black carbon in contrasting environments in India: temporal variability, source apportionment and radiative forcing. Atmos. Environ., 302 (2023), Article 119734,
CrossRef Google scholar
W.C. Skamarock, J.B. Klemp, J. Dudhia, D. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, J.G. Powers. A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research, Boulder, Colorado, USA (2008)
D.V. Spracklen, K.S. Carslaw, U. Pöschl, A. Rap, P.M. Forster. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys., 11 (2011), pp. 9067-9087,
CrossRef Google scholar
B. Su, C.D. Xiao, H.Y. Zhao, Y. Huang, T.F. Dou, X.J. Wang, D.L. Chen. Estimated changes in different forms of precipitation (snow, sleet, and rain) across China: 1961-2016. Atmos. Res., 270 (2022), Article 106078,
CrossRef Google scholar
R. Suárez-Moreno, Y. Kushnir, R. Seager. Observational analysis of decadal and long-term hydroclimate drivers in the Mediterranean region: role of the ocean-atmosphere system and anthropogenic forcing. Clim. Dyn., 58 (2022), pp. 2079-2107,
CrossRef Google scholar
S.K. Tamang, A.M. Ebtehaj, A.F. Prein, A.J. Heymsfield. Linking global changes of snowfall and wet-bulb temperature. J. Clim., 33 (2020), pp. 39-59,
CrossRef Google scholar
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, A., Mitchell, E., Ek, M.B., Gayno, G., Węgiel, W., Cuenca, R.H., 2004. Implementation and verification of the unified Noah land-surface model in the WRF model [presentation].
G.D. Wang, Y.L. He, J.P. Huang, X.D. Guan, X.X. Wang, H.C. Hu, S.S. Wang, Y.K. Xie. The influence of precipitation phase changes on the recharge process of terrestrial water storage in the cold season over the Tibetan Plateau. J. Geophys. Res. d: Atmos., 127 (2022), Article e2021JD035824,
CrossRef Google scholar
G.Y. Wang, Y.Z. Zhuang, R. Fu, S.Y. Zhao, H.Q. Wang. Improving seasonal prediction of California winter precipitation using canonical correlation analysis. J. Geophys. Res. d: Atmos., 126 (2021), Article e2021JD034848,
CrossRef Google scholar
F. Wei. Modern Climatic Statistical Diagnosis and Prediction Technology. (Third ed.), China Meteorological Press, Beijing (2022)
L.Y. Wei, Z. Lu, Y. Wang, X.H. Liu, W.Y. Wang, C.L. Wu, X. Zhao, S. Rahimi, W.W. Xia, Y.Q. Jiang. Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nat. Commun., 13 (2022), Article 1839,
CrossRef Google scholar
J.H. Yang, K.Q. Duan, S.C. Kang, P.H. Shi, Z.M. Ji. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Clim. Dyn., 48 (2017), pp. 2901-2917,
CrossRef Google scholar
J.H. Yang, S.C. Kang, D.L. Chen, L. Zhao, Z.M. Ji, K.Q. Duan, H.J. Deng, L. Tripathee, W.T. Du, M. Rai, F.P. Yan, Y. Li, R.R. Gillies. South Asian black carbon is threatening the water sustainability of the Asian Water Tower. Nat. Commun., 13 (2022), Article 7360,
CrossRef Google scholar
T. Yang, Q. Li, Q. Zou, R. Hamdi, X. Chen, Y.D. Bao, F.Q. Cui, P. De Maeyer, L.H. Li. Quantifying the snowfall variations in the Third Pole region from 1980 to 2020. Atmos. Res., 295 (2023), Article 106985,
CrossRef Google scholar
T.D. Yao, L. Thompson, W. Yang, W.S. Yu, Y. Gao, X.J. Guo, X.X. Yang, K.Q. Duan, H.B. Zhao, B.Q. Xu, J.C. Pu, A.X. Lu, Y. Xiang, D.B. Kattel, D. Joswiak. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2 (2012), pp. 663-667,
CrossRef Google scholar
T.D. Yao, Y.K. Xue, D.L. Chen, F.H. Chen, L. Thompson, P. Cui, T. Koike, W.K.M. Lau, D. Lettenmaier, V. Mosbrugger, R.H. Zhang, B.Q. Xu, J. Dozier, T. Gillespie, Y. Gu, S.C. Kang, S.L. Piao, S. Sugimoto, K. Ueno, L. Wang, W.C. Wang, F. Zhang, Y.W. Sheng, W.D. Guo, Y.X.X. Ailikun, Y.M. Ma, S.S.P. Shen, Z.B. Su, F. Chen, S.L. Liang, Y.M. Liu, V.P. Singh, K. Yang, D.Q. Yang, X.Q. Zhao, Y. Qian, Y. Zhang, Q. Li. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc., 100 (2019), pp. 423-444,
CrossRef Google scholar
T.D. Yao, T. Bolch, D.L. Chen, J. Gao, W. Immerzeel, S. Piao, F.G. Su, L. Thompson, Y. Wada, L. Wang, T. Wang, G.J. Wu, B.Q. Xu, W. Yang, G.Q. Zhang, P. Zhao. The imbalance of the Asian water tower. Nat. Rev. Earth Environ., 3 (2022), pp. 618-632,
CrossRef Google scholar
R. Zhang, H. Wang, Y. Qian, P.J. Rasch, R.C. Easter, P.L. Ma, B. Singh, J. Huang, Q. Fu. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 15 (2015), pp. 6205-6223,
CrossRef Google scholar
Y. Zhou, J.H. Yang, S.C. Kang, Y.L. Hu, X.T. Chen, M. Xu, M.M. Ma. Weakened black carbon trans-boundary transport to the Tibetan Plateau during the COVID-19 pandemic. Sci. Total Environ., 916 (2024), Article 170208,
CrossRef Google scholar
T.J. Zhou, W.X. Zhang. Anthropogenic warming of Tibetan Plateau and constrained future projection. Environ. Res. Lett., 16 (14) (2021), Article 044039,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/