Black carbon aerosols impact snowfall over the Tibetan Plateau
Ye Zhou, Junhua Yang, Shichang Kang, Yuling Hu, Xintong Chen, Mian Xu, Mengmeng Ma
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101978.
Black carbon aerosols impact snowfall over the Tibetan Plateau
Snowfall is the primary form of cold-season precipitation over the Tibetan Plateau (TP), crucial for the maintenance of glaciers and snow cover, affecting regional climates and water resources availability. Through an integrative analysis of observations, numerical simulations, and statistical analyses, we found that the spatiotemporal distribution of snowfall across the TP is significantly influenced by black carbon (BC) aerosols from South Asia and the TP. BC affects the snowfall process through multiple mechanisms. Specifically, BC significantly raises atmospheric temperature over the TP, thereby reducing snowfall, particularly in the central TP during autumn, with reductions reaching approximately − 9 mm water equivalent month−1. Moreover, BC enhances cold-season moisture transport from the Bay of Bengal, increasing moisture flux in the southeastern TP and thereby augmenting snowfall in that area by up to 5 mm water equivalent month−1. This study elucidates the complex impact of BC on the spatial–temporal snowfall patterns across the TP and provides important insights into the sustainable development of water resources in the region amid ongoing climate change.
Tibetan Plateau / Black carbon / Snowfall / Model simulation / Impact mechanism
T. Andrews, P.M. Forster, O. Boucher, N. Bellouin, A. Jones. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37 (14) (2010), Article L14701,
CrossRef
Google scholar
|
T.P. Barnett, R. Preisendorfer. Origins and levels of monthly and seasonal forecast skill for United-States surface air temperatures determined by canonical correlation-analysis. Mon. Weather Rev., 115 (1987), pp. 1825-1850,
CrossRef
Google scholar
|
A.C.M. Beljaars. The parametrization of surface fluxes in large-scale models under free-convection. Q. J. R. Meteorolog. Soc., 121 (1995), pp. 255-270,
CrossRef
Google scholar
|
S. Bibi, L. Wang, X.P. Li, J. Zhou, D.L. Chen, T.D. Yao. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol., 38 (2018), pp. E1-E17,
CrossRef
Google scholar
|
T. Bolch, A. Kulkarni, A. Kääb, C. Huggel, F. Paul, J.G. Cogley, H. Frey, J.S. Kargel, K. Fujita, M. Scheel, S. Bajracharya, M. Stoffel. The state and fate of Himalayan glaciers. Science, 336 (2012), pp. 310-314,
CrossRef
Google scholar
|
T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, C.S. Zender. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. D: Atmos., 118 (2013), pp. 5380-5552,
CrossRef
Google scholar
|
R.R. Buchholz, L.K. Emmons, S. Tilmes, T.C.D. Team. CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions. UCAR/NCAR - Atmospheric Chemistry Observations and Modeling Laboratory (2019),
CrossRef
Google scholar
|
A. Chatterjee, M. Dutta, A. Ghosh, S.K. Ghosh, A. Roy. Relative role of black carbon and sea-salt aerosols as cloud condensation nuclei over a high altitude urban atmosphere in eastern Himalaya. Sci. Total Environ., 742 (2020), Article 140468,
CrossRef
Google scholar
|
X.T. Chen, S.C. Kang, Z.Y. Cong, J.H. Yang, Y.M. Ma. Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmos. Chem. Phys., 18 (2018), pp. 12859-12875,
CrossRef
Google scholar
|
P.F. Chen, S.C. Kang, C.L. Li, Q.G. Zhang, J.M. Guo, L. Tripathee, Y.A. Zhang, G. Li, C. Gul, Z.Y. Cong, X. Wan, H.W. Niu, A.K. Panday, M. Rupakheti, Z.M. Ji. Carbonaceous aerosol characteristics on the third pole: a primary study based on the atmospheric pollution and cryospheric change (APCC) network. Environ. Pollut., 253 (2019), pp. 49-60,
CrossRef
Google scholar
|
J. Ching, N. Riemer, M. West. Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions. J. Geophys. Res. D: Atmos., 121 (2016), pp. 5990-6013,
CrossRef
Google scholar
|
Z. Cong, S. Kang, K. Kawamura, B. Liu, X. Wan, Z. Wang, S. Gao, P. Fu. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos. Chem. Phys., 15 (2015), pp. 1573-1584,
CrossRef
Google scholar
|
A.S. Daloz, M. Mateling, T. L'Ecuyer, M. Kulie, N.B. Wood, M. Durand, M. Wrzesien, C.W. Stjern, A.P. Dimri. How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses. Cryosphere, 14 (2020), pp. 3195-3207,
CrossRef
Google scholar
|
S. Debnath, G. Govardhan, R. Jat, G. Kalita, P. Yadav, C. Jena, R. Kumar, S.D. Ghude. Black carbon emissions and its impact on the monsoon rainfall patterns over the Indian subcontinent: Insights into localized warming effects. Atmos. Environ., X 22 (2024), Article 100257,
CrossRef
Google scholar
|
H.J. Deng, N.C. Pepin, Y.N. Chen. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. d: Atmos., 122 (2017), pp. 7323-7341,
CrossRef
Google scholar
|
A.M. Duan, Z.X. Xiao. Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep., 5 (2015), Article 13711,
CrossRef
Google scholar
|
U. Dusek, G.P. Reischl, R. Hitzenberger. CCN activation of pure and coated carbon black particles. Environ. Sci. Technol., 40 (2006), pp. 1223-1230,
CrossRef
Google scholar
|
G.A. Grell, S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, B. Eder. Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39 (2005), pp. 6957-6975,
CrossRef
Google scholar
|
J.P. Huang, J.R. Ma, X.D. Guan, Y. Li, Y.L. He. Progress in semi-arid climate change studies in China. Adv. Atmos. Sci., 36 (2019), pp. 922-937,
CrossRef
Google scholar
|
M.J. Iacono, J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. d: Atmos., 113 (2008), Article D13103,
CrossRef
Google scholar
|
W.W. Immerzeel, A.F. Lutz, M. Andrade, A. Bahl, H. Biemans, T. Bolch, S. Hyde, S. Brumby, B.J. Davies, A.C. Elmore, A. Emmer, M. Feng, A. Fernández, U. Haritashya, J.S. Kargel, M. Koppes, P.D.A. Kraaijenbrink, A.V. Kulkarni, P.A. Mayewski, S. Nepal, P. Pacheco, T.H. Painter, F. Pellicciotti, H. Rajaram, S. Rupper, A. Sinisalo, A.B. Shrestha, D. Viviroli, Y. Wada, C. Xiao, T. Yao, J.E.M. Baillie. Importance and vulnerability of the world's water towers. Nature, 577 (2020), pp. 364-369,
CrossRef
Google scholar
|
Z. Ji. Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv. Clim. Change Res., 7 (2016), pp. 139-144,
CrossRef
Google scholar
|
R. Jia, Y.Z. Liu, B. Chen, Z.J. Zhang, J.P. Huang. Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123 (2015), pp. 210-219,
CrossRef
Google scholar
|
S.C. Kang, Y.W. Xu, Q.L. You, W.A. Flügel, N. Pepin, T.D. Yao. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5 (1) (2010), Article 015101,
CrossRef
Google scholar
|
S.C. Kang, P.F. Chen, C.L. Li, B. Liu, Z.Y. Cong. Atmospheric aerosol elements over the Inland Tibetan Plateau: Concentration, seasonality, and transport. Aerosol Air Qual. Res., 16 (2016), pp. 789-800,
CrossRef
Google scholar
|
S.C. Kang, Q.G. Zhang, Y. Qian, Z.M. Ji, C.L. Li, Z.Y. Cong, Y.L. Zhang, J.M. Guo, W.T. Du, J. Huang, Q.L. You, A.K. Panday, M. Rupakheti, D.L. Chen, Ö. Gustafsson, M.H. Thiemens, D.H. Qin. Linking atmospheric pollution to cryospheric change in the third pole region: current progress and future prospects. Natl. Sci. Rev., 6 (2019), pp. 796-809,
CrossRef
Google scholar
|
S.C. Kang, Y.L. Zhang, P.F. Chen, J.M. Guo, Q.G. Zhang, Z.Y. Cong, S. Kaspari, L. Tripathee, T.G. Gao, H.W. Niu, X.Y. Zhong, X.T. Chen, Z.F. Hu, X.F. Li, Y. Li, B. Neupane, F.P. Yan, D. Rupakheti, C. Gul, W. Zhang, G.M. Wu, L. Yang, Z.Q. Wang, C.L. Li. Black carbon and organic carbon dataset over the third pole. Earth Syst. Sci. Data, 14 (2022), pp. 683-707,
CrossRef
Google scholar
|
E.D. Kireeva, O.B. Popovicheva, N.M. Persiantseva, T.D. Khokhlova, N.K. Shonija. Effect of black carbon particles on the efficiency of water droplet freezing. Colloid J., 71 (2009), pp. 353-359,
CrossRef
Google scholar
|
R.R. Kumar, V.K. Soni, M.K. Jain. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci. Total Environ., 723 (2020), Article 138060,
CrossRef
Google scholar
|
K.M. Lau, M.K. Kim, K.M. Kim. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan plateau. Clim. Dyn., 26 (2006), pp. 855-864,
CrossRef
Google scholar
|
W. Lau, M. Kim, K. Kim, W. Lee. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5 (2010), Article 025204,
CrossRef
Google scholar
|
C.L. Li, C. Bosch, S.C. Kang, A. Andersson, P.F. Chen, Q.G. Zhang, Z.Y. Cong, B. Chen, D.H. Qin, Ö. Gustafsson. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat. Commun., 7 (2016), Article 12574,
CrossRef
Google scholar
|
Y.T. Li, Y.H. Gao, G.X. Chen, G.Y. Wang, M. Zhang. Decomposition and reduction of WRF-modeled wintertime cold biases over the Tibetan Plateau. Clim. Dyn., 62 (2024), pp. 4189-4203,
CrossRef
Google scholar
|
J. Li, K. von Salzen, Y. Peng, H. Zhang, X. Liang. Evaluation of black carbon semi-direct radiative effect in a climate model. J. Geophys. Res. D: Atmos., 118 (2013), pp. 4715-4728,
CrossRef
Google scholar
|
Y.R. Lun, L. Liu, L. Cheng, X.P. Li, H. Li, Z.X. Xu. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol., 41 (2021), pp. 3994-4018,
CrossRef
Google scholar
|
G.A. Meehl, J.M. Arblaster, W.D. Collins. Effects of black carbon aerosols on the Indian monsoon. J. Clim., 21 (2008), pp. 2869-2882,
CrossRef
Google scholar
|
Y. Ming, V. Ramaswamy, G. Persad. Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37 (2010), Article L13701,
CrossRef
Google scholar
|
A.K. Mishra, M. Rafiq. Analyzing snowfall variability over two locations in Kashmir, India in the context of warming climate. Dyn. Atmos. Oceans, 79 (2017), pp. 1-9,
CrossRef
Google scholar
|
H. Morrison, G. Thompson, V. Tatarskii. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev., 137 (2009), pp. 991-1007,
CrossRef
Google scholar
|
A. Muhlbauer, U. Lohmann. Sensitivity studies of aerosol-cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66 (2009), pp. 2517-2538,
CrossRef
Google scholar
|
P.A. O’Gorman. Contrasting responses of mean and extreme snowfall to climate change.. Nature, 512 (7515) (2014), pp. 416-418,
CrossRef
Google scholar
|
P. Peng, L. Zhu. Observations of land surface processes of the Tibetan Plateau based on the field stations network. Science & Technology Review, 35 (2017), pp. 97-102
|
A.F. Prein, A.J. Heymsfield. Increased melting level height impacts surface precipitation phase and intensity. Nat. Clim. Change, 10 (2020), pp. 771-776,
CrossRef
Google scholar
|
V. Ramanathan, G. Carmichael. Global and regional climate changes due to black carbon. Nat. Geosci., 1 (2008), pp. 221-227,
CrossRef
Google scholar
|
V. Ramanathan, M.V. Ramana. Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys., 162 (2005), pp. 1609-1626,
CrossRef
Google scholar
|
B. Romshoo, M.A. Bhat, G. Habib. Black carbon in contrasting environments in India: temporal variability, source apportionment and radiative forcing. Atmos. Environ., 302 (2023), Article 119734,
CrossRef
Google scholar
|
W.C. Skamarock, J.B. Klemp, J. Dudhia, D. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, J.G. Powers. A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research, Boulder, Colorado, USA (2008)
|
D.V. Spracklen, K.S. Carslaw, U. Pöschl, A. Rap, P.M. Forster. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys., 11 (2011), pp. 9067-9087,
CrossRef
Google scholar
|
B. Su, C.D. Xiao, H.Y. Zhao, Y. Huang, T.F. Dou, X.J. Wang, D.L. Chen. Estimated changes in different forms of precipitation (snow, sleet, and rain) across China: 1961-2016. Atmos. Res., 270 (2022), Article 106078,
CrossRef
Google scholar
|
R. Suárez-Moreno, Y. Kushnir, R. Seager. Observational analysis of decadal and long-term hydroclimate drivers in the Mediterranean region: role of the ocean-atmosphere system and anthropogenic forcing. Clim. Dyn., 58 (2022), pp. 2079-2107,
CrossRef
Google scholar
|
S.K. Tamang, A.M. Ebtehaj, A.F. Prein, A.J. Heymsfield. Linking global changes of snowfall and wet-bulb temperature. J. Clim., 33 (2020), pp. 39-59,
CrossRef
Google scholar
|
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, A., Mitchell, E., Ek, M.B., Gayno, G., Węgiel, W., Cuenca, R.H., 2004. Implementation and verification of the unified Noah land-surface model in the WRF model [presentation].
|
G.D. Wang, Y.L. He, J.P. Huang, X.D. Guan, X.X. Wang, H.C. Hu, S.S. Wang, Y.K. Xie. The influence of precipitation phase changes on the recharge process of terrestrial water storage in the cold season over the Tibetan Plateau. J. Geophys. Res. d: Atmos., 127 (2022), Article e2021JD035824,
CrossRef
Google scholar
|
G.Y. Wang, Y.Z. Zhuang, R. Fu, S.Y. Zhao, H.Q. Wang. Improving seasonal prediction of California winter precipitation using canonical correlation analysis. J. Geophys. Res. d: Atmos., 126 (2021), Article e2021JD034848,
CrossRef
Google scholar
|
F. Wei. Modern Climatic Statistical Diagnosis and Prediction Technology. (Third ed.), China Meteorological Press, Beijing (2022)
|
L.Y. Wei, Z. Lu, Y. Wang, X.H. Liu, W.Y. Wang, C.L. Wu, X. Zhao, S. Rahimi, W.W. Xia, Y.Q. Jiang. Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nat. Commun., 13 (2022), Article 1839,
CrossRef
Google scholar
|
J.H. Yang, K.Q. Duan, S.C. Kang, P.H. Shi, Z.M. Ji. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Clim. Dyn., 48 (2017), pp. 2901-2917,
CrossRef
Google scholar
|
J.H. Yang, S.C. Kang, D.L. Chen, L. Zhao, Z.M. Ji, K.Q. Duan, H.J. Deng, L. Tripathee, W.T. Du, M. Rai, F.P. Yan, Y. Li, R.R. Gillies. South Asian black carbon is threatening the water sustainability of the Asian Water Tower. Nat. Commun., 13 (2022), Article 7360,
CrossRef
Google scholar
|
T. Yang, Q. Li, Q. Zou, R. Hamdi, X. Chen, Y.D. Bao, F.Q. Cui, P. De Maeyer, L.H. Li. Quantifying the snowfall variations in the Third Pole region from 1980 to 2020. Atmos. Res., 295 (2023), Article 106985,
CrossRef
Google scholar
|
T.D. Yao, L. Thompson, W. Yang, W.S. Yu, Y. Gao, X.J. Guo, X.X. Yang, K.Q. Duan, H.B. Zhao, B.Q. Xu, J.C. Pu, A.X. Lu, Y. Xiang, D.B. Kattel, D. Joswiak. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2 (2012), pp. 663-667,
CrossRef
Google scholar
|
T.D. Yao, Y.K. Xue, D.L. Chen, F.H. Chen, L. Thompson, P. Cui, T. Koike, W.K.M. Lau, D. Lettenmaier, V. Mosbrugger, R.H. Zhang, B.Q. Xu, J. Dozier, T. Gillespie, Y. Gu, S.C. Kang, S.L. Piao, S. Sugimoto, K. Ueno, L. Wang, W.C. Wang, F. Zhang, Y.W. Sheng, W.D. Guo, Y.X.X. Ailikun, Y.M. Ma, S.S.P. Shen, Z.B. Su, F. Chen, S.L. Liang, Y.M. Liu, V.P. Singh, K. Yang, D.Q. Yang, X.Q. Zhao, Y. Qian, Y. Zhang, Q. Li. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc., 100 (2019), pp. 423-444,
CrossRef
Google scholar
|
T.D. Yao, T. Bolch, D.L. Chen, J. Gao, W. Immerzeel, S. Piao, F.G. Su, L. Thompson, Y. Wada, L. Wang, T. Wang, G.J. Wu, B.Q. Xu, W. Yang, G.Q. Zhang, P. Zhao. The imbalance of the Asian water tower. Nat. Rev. Earth Environ., 3 (2022), pp. 618-632,
CrossRef
Google scholar
|
R. Zhang, H. Wang, Y. Qian, P.J. Rasch, R.C. Easter, P.L. Ma, B. Singh, J. Huang, Q. Fu. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 15 (2015), pp. 6205-6223,
CrossRef
Google scholar
|
Y. Zhou, J.H. Yang, S.C. Kang, Y.L. Hu, X.T. Chen, M. Xu, M.M. Ma. Weakened black carbon trans-boundary transport to the Tibetan Plateau during the COVID-19 pandemic. Sci. Total Environ., 916 (2024), Article 170208,
CrossRef
Google scholar
|
T.J. Zhou, W.X. Zhang. Anthropogenic warming of Tibetan Plateau and constrained future projection. Environ. Res. Lett., 16 (14) (2021), Article 044039,
CrossRef
Google scholar
|
/
〈 |
|
〉 |