Consistent crystal orientation of core and rim pyrites indicates an epitaxial growth of rim in Carlin-type gold deposits
Jingdan Xiao, Zhuojun Xie, Yong Xia, Phillip Gopon, Qinping Tan
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101966.
Consistent crystal orientation of core and rim pyrites indicates an epitaxial growth of rim in Carlin-type gold deposits
The gold-bearing arsenian pyrite in Carlin-type gold deposits typically grows around the gold/arsenic-poor pyrite core, forming core–rim textured pyrite. However, the causes of rim pyrite precipitation around the early-formed core pyrite and the growth mechanisms of the rim pyrite remain unclear. Here, we combined scanning electron microscopy, electron probe micro-analysis, and nanoscale secondary ion mass spectrometry to investigate the textural and chemical characteristics of core–rim textured pyrite from the giant Shuiyindong and Lannigou gold deposits. Furthermore, we used electron backscattered diffraction and transmission electron microscopy to characterize their crystallographic structure. The results indicated that core–rim textured pyrite is the dominant pyrite type in the ore. This type of pyrite is characterized by the sharp core–rim interfaces, euhedral-subhedral morphology, and oscillating zoning. The gold/arsenic-rich rim and gold/arsenic-poor core formed during the main-ore and pre-ore stages, respectively. Crystallographically, the rim showed that a crystallographic orientation is similar to that of the core along the (0 1 0) crystal facet, indicating that the core pyrite serves as a template for the epitaxial growth of rim pyrite. Textural and chemical features indicate that the epitaxy occurs in the process of direct precipitation of main-ore pyrite over the pre-ore pyrite. As Carlin ore fluids dissolve the iron-bearing carbonates, iron concentrations in the fluids increase, thereby creating a supersaturation environment suitable for the nucleation of main-ore pyrite. Because the minimal lattice misfit would minimize the surface free energy and the (0 1 0) facet of pyrite has a lower surface energy than other facets, the nucleated pyrite would readily grow along the (0 1 0) facet of preexisting pyrite via epitaxy. Our findings highlight that the widespread preexisting pyrite facilitates late-stage pyrite precipitation. For Carlin-type gold deposits, the pre-ore pyrite is essential owing to its promoting the precipitation of gold-bearing pyrite.
Core–rim textured pyrite / Epitaxial growth / Carlin-type gold deposits / Shuiyindong / Lannigou
J.R. Craig, F.M. Vokes, T.N. Solberg. Pyrite: physical and chemical textures. Mineralium Deposita, 34 (1998), pp. 82-101
|
A.P. Deditius, S. Utsunomiya, D. Renock, R.C. Ewing, C.V. Ramana, U. Becker, S.E. Kesler. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmoch. Acta, 72 (2008), pp. 2919-2933
|
Y.S. Du, H. Huang, J.H. Yang, H.W. Huang, P. Tao, Z.Q. Huang, L.S. Hu, C.X. Xie. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification. Geol. Rev., 59 (2013), pp. 1-11
|
K. Ehrig, C.L. Ciobanu, M.R. Verdugo-Ihl, M. Dmitrijeva, N.J. Cook, A. Slattery. Lifting the cloak of invisibility: Gold in pyrite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Am. Mineral., 108 (2023), pp. 259-276
|
D. Fougerouse, S. Micklethwaite, A.G. Tomkins, Y. Mei, M. Kilburn, P. Guagliardo, L.A. Fisher, A. Halfpenny, M. Gee, D. Paterson, D.L. Howard. Gold remobilisation and formation of high grade ore shoots driven by dissolution–reprecipitation replacement and Ni substitution into auriferous arsenopyrite. Geochim. Cosmoch. Acta, 178 (2016), pp. 143-159
|
H.E. Frimmel. Earth’s continental crustal gold endowment. Earth Planet. Sci. Lett., 267 (2008), pp. 45-55
|
C.S. Gan, Y.J. Wang, Y.Z. Zhang, X. Qian. Petrogenesis of Late Cretaceous granites and implications for W-Sn mineralization in the Youjiang Basin, South China. Ore Geol. Rev., 144 (2022), Article 104846
|
W. Gao, R.Z. Hu, L. Mei, X.W. Bi, S.L. Fu, M.L. Huang, J. Yan, J.W. Li. Monitoring the evolution of sulfur isotope and metal concentrations across gold-bearing pyrite of Carlin-type gold deposits in the Youjiang Basin, SW China. Ore Geol. Rev., 147 (2022), Article 104990
|
P. Gopon, J.O. Douglas, M.A. Auger, L. Hansen, J. Wade, J.S. Cline, L.J. Robb, M.P. Moody. A nanoscale investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective. Econ. Geol., 114 (2019), pp. 1123-1133
|
D.D. Gregory, R.R. Large, A.B. Bath, J.A. Steadman, S. Wu, L. Danyushevsky, S.W. Bull, P. Holden, T.R. Ireland. Trace Element content of pyrite from the Kapai Slate, St. Ives Gold District, Western Australia. Econ. Geol., 111 (2016), pp. 1297-1320
|
D.D. Gregory, L. Kovarik, S.D. Taylor, D.E. Perea, J.D. Owens, N. Atienza, T.W. Lyons. Nanoscale trace-element zoning in pyrite framboids and implications for paleoproxy applications. Geology, 50 (2022), pp. 736-740
|
D.E. Harlov, R. Wirth, C.J. Hetherington. Fluid-mediated partial alteration in monazite: The role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib. Mineral. Petr., 162 (2) (2011), pp. 329-348
|
X.H. He, W.C. Su, N.P. Shen, X.P. Xia, F.Y. Wang. In situ multiple sulfur isotopes and chemistry of pyrite support a sedimentary source-rock model for the Linwang Carlin-type gold deposit in the Youjiang Basin, Southwest China. Ore Geol. Rev., 139 (2021), Article 104533
|
A.H. Hofstra, J.S. Cline. Characteristics and models for Carlin-type gold deposits. Rev. Econ. Geol., 13 (2000), pp. 163-220
|
E.A. Holley, A. Fulton, C. Jilly-Rehak, C. Johnson, M. Pribil. Nanoscale isotopic evidence resolves origins of giant Carlin-type ore deposits. Geology, 50 (2022), pp. 660-664
|
L. Hou, H.J. Peng, J. Ding, J.R. Zhang, S.B. Zhu, S.Y. Wu, Y. Wu, H.G. Ouyang. Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for paragenesis and source of sulfur. Econ. Geol., 111 (2016), pp. 331-353
|
J. Hövelmann, A. Putnis, T. Geisler, B.C. Schmidt, U. Golla-Schindler. The replacement of plagioclase feldspars by albite: Observations from hydrothermal experiments. Contribut. Mineral. Petrol., 159 (1) (2010), pp. 43-59
|
R.Z. Hu, S.L. Fu, Y. Huang, M.F. Zhou, S.H. Fu, C.H. Zhao, Y.J. Wang, X.W. Bi, J.F. Xiao. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci., 137 (2017), pp. 9-34
|
Y.Z. Hu, W.H. Liu, G.Q. Zhang, S.J. Guan, Y.M. Lu, P.Y. Li, S. Zheng, H.J. Fan, P.G. Betts. Seismic reflection profiles reveal the ore-controlling structures of Carlin-style gold deposits in Lannigou gold fields, Southwestern Guizhou. China. Econ. Geol., 117 (2022), pp. 1203-1224
|
A. Hung, J. Muscat, I. Yarovsky, S.P. Russo. Density-functional theory studies of pyrite FeS2(100) and (110) surfaces. Surface Sci., 513 (3) (2002), pp. 511-524
|
N. Kaiser. Review of the fundamentals of thin-film growth. Appl. Opt., 41 (2002), pp. 3053-3060
|
C. Kusebauch, M. Oelze, S.A. Gleeson. Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement. Chem. Geol., 500 (15) (2018), pp. 136-147
|
C. Kusebauch, S.A. Gleeson, M. Oelze. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Sci. Adv., 5 (2019), pp. 1-8
|
C.-K. Lai, S. Meffre, A.J. Crawford, K. Zaw, C.D. Xue, J.A. Halpin. The Western Ailaoshan volcanic belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Res., 26 (2014), pp. 52-74
|
R.R. Large, L. Danyushevsky, C. Hollit, V. Maslennikov, S. Meffre, S. Gilbert, S. Bull, R. Scott, P. Emsbo, H. Thomas, B. Singh, J. Foster. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol., 104 (2009), pp. 635-668
|
R.R. Large, S.W. Bull, V.V. Maslennikov. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol., 106 (2011), pp. 331-358
|
J.X. Li, R.Z. Hu, C.H. Zhao, J.J. Zhu, Y. Huang, W. Gao, Y.Z. Zhuo. Sulfur isotope and trace element compositions of pyrite determined by NanoSIMS and LA-ICP-MS: New constraints on the genesis of the Shuiyindong Carlin-like gold deposit in SW China. Mineral. Deposita, 55 (2019), pp. 1279-1298
|
Q.L. Liang, Z.J. Xie, X.Y. Song, R. Wirth, Y. Xia, J. Cline. Evolution of invisible Au in arsenian pyrite in Carlin-type Au deposits. Econ. Geol., 116 (2021), pp. 515-526
|
S.R. Lin, K. Hu, J. Cao, T. Bai, Y. Liu, S.C. Han. An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin, southwest China. Ore Geol. Rev., 134 (2021), Article 104187
|
S.R. Lin, K. Hu, J. Cao, Y. Liu, S.J. Liu, B. Zhang. Coupling and decoupling of Au and As in pyrite from Carlin-type Au deposits, southwest China. J. Asian Earth Sci., 246 (2023), Article 105582
|
J.Z. Liu. The geology of the Yanshang gold deposit, Zhenfeng County, Guizhou. Guizhou Geology, 18 (2001), pp. 174-178
|
J.Z. Liu, J.W. Li, Z.G. Zhou, Z.P. Wang, F.E. Chen, L.S. Qi, C.F. Yang, L. Hou, X.Y. Jin, J.H. Li, B.N. Yang, L.Y. Xu, M. Zhang, J.R. Zhang, L.J. Tan, S.T. Li, C.X. Long, Z.K. Fu, Y.N. He, M.H. Meng, X.Y. Wang. New progress of exploration and research of Zhenfeng–Puan gold fully equipped exploration area. Guizhou Geol., 34 (2017), pp. 244-254
|
S. Liu, W.C. Su, R.Z. Hu, C.X. Feng, S. Gao, I.M. Coulson, T. Wang, G.Y. Feng, Y. Tao, Y. Xia. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos, 114 (2010), pp. 253-264
|
Y. Ma, S.Y. Jiang, H.E. Frimmel, L.Y. Zhu. In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China. Am. Mineral., 107 (2022), pp. 1133-1148
|
S. Niederl, P. Felfer, V. Bertrandsson Erlandsson, C. Mottram, J. Raith, P. Gopon. Invisible metals for a green future: Au associated critical elements in historic mining districts Murtal (Styria). Conference Paper (2022)
|
E.C. Peterson, J.A. Mavrogenes. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology, 42 (2014), pp. 383-386
|
A. Putnis. Mineral replacement reactions. Rev. Mineral. Geochem., 70 (2009), pp. 87-124
|
C.V. Putnis, K. Tsukamoto, Y. Nishimura. Direct observations of pseudomorphism: Compositional and textural evolution at a fluid–solid interface. Am. Mineral., 90 (2005), pp. 1909-1912
|
Z.W. Qiu, Z.K. Li, Z.Z. Yuan. Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong district: Implications for mechanism of gold enrichment. Earth Sci., 47 (1) (2022), pp. 290-308
|
C. Raufaste, B. Jamtveit, T. John, P. Meakin, D.K. Dysthe. The mechanism of porosity formation during solvent-mediated phase transformations. Proc. Royal Soc. A: Mathematical, Phys. Eng. Sci., 467 (2011), pp. 1408-1426
|
Rickard, D., 2012. Sulfidic sediments and sedimentary rocks.. Developments in Sedimentology. Elsevier, Amsterdam, 801p
|
N. Román, M. Reich, M. Leisen, D. Morata, F. Barra, A.P. Deditius. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim. Cosmoch. Acta, 246 (2019), pp. 60-85
|
K.M. Rosso, D.J. Vaughan. Reactivity of sulfide mineral surfaces. Rev. Mineral. Geochem., 61 (1) (2006), pp. 557-607
|
E. Ruiz-Agudo, C.V. Putnis, A. Putnis. Coupled dissolution and precipitation at mineral–fluid interfaces. Chem. Geol., 383 (2014), pp. 132-146
|
Simmons, S.F., Tutolo, B.M., Barker, S.L.L., Goldfarb, R.J., Robert, F., 2020. Hydrothermal gold deposition in epithermal, Carlin, and orogenic deposits. In: Sillitoe, R.H., Goldfarb, R.J., Robert, F., Simmons, S.F., (EdS.), Geology of the World’s Major Gold Deposits and Provinces, Society of Economic Geologists, U.S.A. p 823–845.
|
H.M. Su, S.Y. Jiang, J.B. Shao, D.Y. Zhang, X.K. Wu, X.Q. Huang. New identification and significance of Early Cretaceous mafic rocks in the interior South China Block. Sci. Reports, 11 (2021), p. 11396
|
W.C. Su, B. Xia, H.T. Zhang, X.C. Zhang, R.Z. Hu. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation. Ore Geol. Rev., 33 (2008), pp. 667-679
|
W.C. Su, C.A. Heinrich, T. Pettke, X.C. Zhang, R.Z. Hu, B. Xia. Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulfidation by deep crustal fluids. Econ. Geol., 104 (2009), pp. 73-93
|
W.C. Su, H.T. Zhang, R.Z. Hu, X. Ge, B. Xia, Y.Y. Chen, C. Zhu. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes. Mineral. Deposita, 47 (2012), pp. 653-662
|
W.C. Su, W.D. Dong, X.C. Zhang, N.P. Shen, R.Z. Hu, A.H. Hofstra, L.Z. Cheng, Y. Xia, K.Y. Yang. Carlin-type gold deposits in the Dian-Qian-Gui “golden triangle” of Southwest China. Rev. Econ. Geol., 20 (2018), pp. 157-185
|
I. Sunagawa. Crystals: Growth, morphology, and perfection. Cambridge University Press, Oxford (2005), p. 295p
|
W. Tan, S.M. Reddy, D. Fougerouse, C.Y. Wang, B. Wei, H.Y. Xian, Y.P. Yang, H.P. He. Superimposed microstructures of pyrite in auriferous quartz veins as fingerprints of episodic fluid infiltration in the Wulong Lode gold deposit, NE China. Mineral. Deposita, 57 (2022), pp. 685-700
|
Q.P. Tan, Y. Xia, Z.J. Xie, J. Yan. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou. China. Ore Geol. Rev., 69 (2015), pp. 140-156
|
N.T.K. Thanh, N. Maclean, S. Mahiddine. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev., 114 (2014), pp. 7610-7630
|
M. Vahidi, S.W. Lehner, P.R. Buseck, N. Newman. Growth of epitaxial pyrite (FeS2) thin films using sequential evaporation. Acta Materialia, 61 (19) (2013), pp. 7392-7398
|
Y.G. Wang, L.T. Wang, M.F. Zhang, L.L. Wang. Texture of upper crust and pattern of the disseminated gold deposits distributed in Nanpanjiang area. Guizhou Geol., 12 (1995), pp. 91-183
|
Z.L. Wang, Y.F. Wang, E.K. Peng, S.H. Zou, T. Deng, F. Lai, J.T. Ning, G.J. Dong, D.R. Xu. Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit, South China. Ore Geol. Rev., 142 (2022), Article 104721
|
D.T. Wei, Y. Xia, D.D. Gregory, J.A. Steadman, Q.P. Tan, Z.J. Xie, X.J. Liu. Multistage pyrites in the Nibao disseminated gold deposit, southwestern Guizhou Province, China: Insights into the origin of Au from textures, in situ trace elements, and sulfur isotope analyses. Ore Geol. Rev., 122 (2020), Article 103446
|
R. Wirth. Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eu. J. Mineral., 16 (2004), pp. 863-876
|
R. Wirth. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol., 261 (2009), pp. 217-229
|
Y.F. Wu, K. Evans, J.W. Li, D. Fougerouse, R.R. Large, P. Guagliardo. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit. Geochim. Cosmoch. Acta, 245 (2019), pp. 98-117
|
Z.J. Xie, K.J. Huang, Y. Xia, J. Cline, Q.P. Tan, J.Z. Liu, J.D. Xiao, B. Yan. Heavy δ26Mg values in carbonate indicate a magmatic-hydrothermal origin of Carlin-type Au deposit. Geochim. Cosmoch. Acta, 333 (2022), pp. 166-183
|
Z.J. Xie, P. Gopon, Y. Xia, J.O. Douglas, J. Cline, J.Z. Liu, Q.P. Tan, J.D. Xiao, Y.Y. Wen, Y.W. Chen, P. Li, M.P. Moody. Does SW China have Carlin-type gold deposits? A micro- to atomic-scale perspective. Mineral. Deposita, 59 (2024), pp. 757-772
|
L. Xing, W.C. Li, M. Zang, F.C. Yang, J. Liu, Y.J. Shi, L. Guo, P.B. Li. Genesis and mineralization implications of dissolution–regrowth pyrite in the large Qukulekedong Au–Sb deposit, East Kunlun, NW China. Ore Geol. Rev., 157 (2023), Article 105448
|
J. Yan, R.Z. Hu, S. Liu, Y.T. Lin, J.C. Zhang, S.L. Fu. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: New insights into the origin and evolution of Au-bearing fluids. Ore Geol. Rev., 92 (2018), pp. 29-41
|
L. Yang, Q.F. Wang, R.R. Large, D. Fougerouse, I. Mukherjee, Q.Z. Zhang, J. Deng. Texture and geochemistry of pyrite from the Jinya, Nakuang and Gaolong gold deposits in the Youjiang Basin: Implications for basin-scale gold mineralization. Mineral. Deposita, 57 (2022), pp. 1367-1390
|
K. Zaw, S. Meffre, C.-K. Lai, C. Burrett, M. Santosh, I. Graham, T. Manaka, A. Salam, T. Kamvong, P. Cromie. Tectonics and metallogeny of mainland Southeast Asia—A review and contribution. Gondwana Res., 26 (2014), pp. 5-30
|
G.P. Zeng, X.L. Hu, D.W. Luo, J.Z. Liu, S.Z. Yao, Y.J. Jin. Structural control of the Getang Carlin-type gold deposit in Southwest China. J. Earth Sci., 35 (2) (2024), pp. 536-552
|
C. Zhang, Z.H. Duan. A model for C-O-H fluid in the Earth’s mantle. Geoch. Cosmoch. Acta, 73 (2009), pp. 2089-2102
|
Q. Zhang, S.J. Liu, S.H. Yu. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Materials Chem., 19 (2008), pp. 191-207
|
J. Zhao, J.L. Liang, J. Li, Y. Huang, X.M. Liu, J.C. Zhang, J.L. Hao, W.D. Sun, J.Z. Li, J.Q. Xie. Gold and sulfur sources of the Taipingdong Carlin-type gold deposit: Constraints from simultaneous determination of sulfur isotopes and trace elements in pyrite using nanoscale secondary ion mass spectroscopy. Ore Geol. Rev., 117 (2020), Article 103299
|
L.J. Zheng, Q.P. Tan, Y.J. Zuo, Y. Xia, Z.J. Xie, L.L. Zheng, J.Z. Liu. Two hydrothermal events associated with Au mineralization in the Youjiang Basin, Southwestern China. Ore Geol. Rev., 144 (2022), Article 104816
|
/
〈 |
|
〉 |