Linking basin-scale hydrology with climatic parameters in western Himalaya: Application of satellite data, temperature index modelling and in-situ observations
Smriti Srivastava, Mohd. Farooq Azam, Praveen Kumar Thakur
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101936.
Linking basin-scale hydrology with climatic parameters in western Himalaya: Application of satellite data, temperature index modelling and in-situ observations
Due to limited spatial and temporal in-situ runoff data availability, Himalaya-Karakoram (HK) glaciohydrology has a significant knowledge gap between large-scale and small-scale runoff modelling studies. This study reconstructs longest basin-wide runoff series in Chandra-Bhaga Basin by applying a high-resolution glaciohydrological model SPHY (Spatial Processes in Hydrology) over 1950–2022. Two-tier model calibration is done using in-situ basin-wide runoff (1973–2006) and MODIS snow cover (2003–2018). Model validation is done against in-situ Chhota Shigri Glacier catchment-wide runoff (2010–2015). The modelled mean annual basin-wide runoff is 60.21 ± 6.17 m3/s over 1950–2022, with maximum runoff in summer-monsoon months, peaking in July (182.69 m3/s). Glacier runoff (ice melt + snowmelt over glacier) contributes maximum (39%) followed by equal contributions from snowmelt runoff from non-glacierized basin area and baseflow (25%), while rainfall-runoff contributes minimum (11 %) to total runoff. There is a significant volumetric increase by ∼7% from pre- (59.17 m3/s) to post-2000 (63.47 m3/s) mainly because of early onset of snowmelt post-2000 that resulted in a hydrograph shift by ∼25 days earlier in spring. The glacier runoff is overestimated by 3% from RGI 7.0 inventory compared to different manually delineated inventories over 1950–2022, because of higher glacierized area from RGI 7.0. The precipitation shows a negative trend, but total runoff shows a positive trend due to positive trend of temperature that resulted in more glacier runoff and rainfall-runoff for basin over last 72 years. Basin-wide runoff is mainly governed by summer temperature which directly controls the amount of glacier and snowmelt runoffs and is supported by summer rainfall. This study highlights importance of basin-scale model calibration with in-situ data in large scale studies and stresses the need for in-situ observations in high-altitude Himalayan region. Basin-scale calibrated model parameters are transferable to glacier catchment scale within Chandra-Bhaga Basin, showing the model robustness at a small catchment scale.
Himalaya / Glaciohydrological model / Glacier runoff / Baseflow / Pre- and post-2000 / Chandra-Bhaga Basin
J.G. Arnold, D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D. Harmel, A. Van Griensven, M.W. Van Liew, N. Kannan, M.K. Jha. SWAT: model use, calibration, and validation. Trans. ASABE, 55 (2012), pp. 1491-1508, 10.13031/2013.42256
|
M. Arora, D.S. Rathore, R.D. Singh, R. Kumar, A. Kumar. Estimation of melt contribution to total streamflow in river Bhagirathi and River DhauliGanga at Loharinag Pala and Tapovan Vishnugad project sites. JWARP, 02 (2010), pp. 636-643,
CrossRef
Google scholar
|
M. Arora, R. Kumar, N. Kumar, J. Malhotra. Assessment of suspended sediment concentration and load from a large Himalayan glacier. Hydrol. Res., 45 (2014), pp. 292-306,
CrossRef
Google scholar
|
M.F. Azam, P. Wagnon, E. Berthier, C. Vincent, K. Fujita, J.S. Kargel. Review of the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol., 64 (2018), pp. 61-74,
CrossRef
Google scholar
|
M.F. Azam, J.S. Kargel, J.M. Shea, S. Nepal, U.K. Haritashya, S. Srivastava, F. Maussion, N. Qazi, P. Chevallier, A.P. Dimri, A.V. Kulkarni, J.G. Cogley, I. Bahuguna. Glaciohydrology of the Himalaya-Karakoram. Science, 373 (2021), Article eabf3668,
CrossRef
Google scholar
|
M.F. Azam, S. Srivastava. Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. J. Hydrol., 590 (2020), Article 125432,
CrossRef
Google scholar
|
M.F. Azam, P. Wagnon, C. Vincent, A.l. Ramanathan, N. Kumar, S. Srivastava, J.G. Pottakkal, P. Chevallier. Snow and ice melt contributions in a highly glacierized catchment of Chhota Shigri Glacier (India) over the last five decades. J. Hydrol., 574 (2019), pp. 760-773,
CrossRef
Google scholar
|
K. Beven. How far can we go in distributed hydrological modelling?. Hydrol. Earth Syst. Sci., 5 (2001), pp. 1-12,
CrossRef
Google scholar
|
M.E. Brown, A.E. Racoviteanu, D.G. Tarboton, A.S. Gupta, J. Nigro, F. Policelli, S. Habib, M. Tokay, M.S. Shrestha, S. Bajracharya, P. Hummel, M. Gray, P. Duda, B. Zaitchik, V. Mahat, G. Artan, S. Tokar. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas. J. Hydrol., 519 (2014), pp. 1859-1869,
CrossRef
Google scholar
|
A.J. Cannon, S.R. Sobie, T.Q. Murdock. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?. J. Clim., 28 (2015), pp. 6938-6959,
CrossRef
Google scholar
|
Chandel, V.S., Ghosh, S., 2021. Components of Himalayan river flows in a Changing climate. Water Resour. Res. 57, e2020WR027589. doi:10.1029/2020WR027589.
|
T. De Boer-Euser, H.K. McMillan, M. Hrachowitz, H.C. Winsemius, H.H.G. Savenije. Influence of soil and climate on root zone storage capacity. Water Resour. Res., 52 (2016), pp. 2009-2024,
CrossRef
Google scholar
|
J. Eeckman, P. Chevallier, A. Boone, L. Neppel, A. De Rouw, F. Delclaux, D. Koirala. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrol. Earth Syst. Sci., 21 (2017), pp. 4879-4893,
CrossRef
Google scholar
|
M. Engelhardt, A.l. Ramanathan, T. Eidhammer, P. Kumar, O. Landgren, A. Mandal, R. Rasmussen. Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, Western Himalaya, Northern India. J. Glaciol., 63 (2017), pp. 618-628,
CrossRef
Google scholar
|
T.G. Farr, P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, D. Alsdorf. The shuttle radar topography mission. Rev. Geophys., 45 (2007), Article RG2004,
CrossRef
Google scholar
|
E. Fatima, M. Hassan, S.U. Hasson, B. Ahmad, S.S.F. Ali. Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia. Theor. Appl. Climatol., 141 (2020), pp. 1093-1108,
CrossRef
Google scholar
|
V.K. Gaddam, T.K. Myneni, A.V. Kulkarni, Y. Zhang. Assessment of runoff in Chandra river basin of Western Himalaya using Remote Sensing and GIS Techniques. Environ. Monit. Assess., 194 (2022), p. 145,
CrossRef
Google scholar
|
P.K. Garg, S. Garg, B. Yousuf, A. Shukla, V. Kumar, M. Mehta. Stagnation of the Pensilungpa glacier, western Himalaya, India: causes and implications. J. Glaciol., 68 (2022), pp. 221-235,
CrossRef
Google scholar
|
V. Gupta, M.K. Jain, P.K. Singh, V. Singh. An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: a comparison with observed precipitation dataset in India. Int. J. Climatol., 40 (2020), pp. 3667-3688,
CrossRef
Google scholar
|
Hargreaves, Samani, 1985. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99. doi:10.13031/2013.26773.
|
S.U. Hasson. Future water availability from Hindukush-Karakoram-Himalaya upper indus basin under conflicting climate change scenarios. Climate, 4 (2016), p. 40,
CrossRef
Google scholar
|
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, J. Thépaut. The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., 146 (2020), pp. 1999-2049,
CrossRef
Google scholar
|
R. Hugonnet, R. McNabb, E. Berthier, B. Menounos, C. Nuth, L. Girod, D. Farinotti, M. Huss, I. Dussaillant, F. Brun, A. Kääb. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592 (2021), pp. 726-731,
CrossRef
Google scholar
|
ICIMOD, 2021. Daily different contribution of total flow from HI-SPHY model for baseline period. doi:10.26066/RDS.22290.
|
W.W. Immerzeel, P. Droogers, S.M. De Jong, M.F.P. Bierkens. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ., 113 (2009), pp. 40-49,
CrossRef
Google scholar
|
W.W. Immerzeel, L.P.H. Van Beek, M.F.P. Bierkens. Climate change will affect the Asian water towers. Science, 328 (2010), pp. 1382-1385,
CrossRef
Google scholar
|
W.W. Immerzeel, F. Pellicciotti, M.F.P. Bierkens. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6 (2013), pp. 742-745,
CrossRef
Google scholar
|
W.W. Immerzeel, N. Wanders, A.F. Lutz, J.M. Shea, M.F.P. Bierkens. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19 (2015), pp. 4673-4687,
CrossRef
Google scholar
|
Jackson, M., Azam, M.F., Baral, P., Benestad, R., Brun, F., Muhammad, S., Pradhananga, S., Shrestha, F., Steiner, J.F., Thapa, A., 2023. Chapter 2: consequences of climate change for the cryosphere in the Hindu Kush Himalaya. In: Water, Ice, Society, and Ecosystems in the Hindu Kush Himalaya: An Outlook. International Centre for Integrated Mountain Development (ICIMOD), pp. 17–71. doi:10.53055/ICIMOD.1030.
|
K.S. Jennings, T.S. Winchell, B. Livneh, N.P. Molotch. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun., 9 (2018), p. 1148,
CrossRef
Google scholar
|
M.G. Kendall. Rank Correlation Methods. Griffin (1948)
|
S. Khanal, A.F. Lutz, P.D.A. Kraaijenbrink, B. Van Den Hurk, T. Yao, W.W. Immerzeel. Variable 21st century climate change response for rivers in high mountain asia at seasonal to decadal time scales. Water Resour. Res., 57 (2021),
CrossRef
Google scholar
|
Kirches, et al., 2014. Land cover cci-product user guide-version 2, ESA Public Doc. CCI-LC-PUG(2.4).
|
P. Krause, D.P. Boyle, F. Bäse. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5 (2005), pp. 89-97,
CrossRef
Google scholar
|
P. Kumar, M.S. Saharwardi, A. Banerjee, M.F. Azam, A.K. Dubey, R. Murtugudde. Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram. Sci. Rep., 9 (2019), p. 18192,
CrossRef
Google scholar
|
S. Laha, R. Kumari, S. Singh, A. Mishra, T. Sharma, A. Banerjee, H.C. Nainwal, R. Shankar. Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers. Ann. Glaciol., 58 (2017), pp. 110-118,
CrossRef
Google scholar
|
S. Laha, A. Banerjee, A. Singh, P. Sharma, M. Thamban. Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate. Hydrol. Earth Syst. Sci., 27 (2023), pp. 627-645,
CrossRef
Google scholar
|
M. Litt, J. Shea, P. Wagnon, J. Steiner, I. Koch, E. Stigter, W. Immerzeel. Glacier ablation and temperature indexed melt models in the Nepalese Himalaya. Sci. Rep., 9 (2019), p. 5264,
CrossRef
Google scholar
|
A.F. Lutz, W.W. Immerzeel, A.B. Shrestha, M.F.P. Bierkens. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change, 4 (2014), pp. 587-592,
CrossRef
Google scholar
|
A. Mandal, A. Ramanathan, M.F. Azam, T. Angchuk, M. Soheb, N. Kumar, J.G. Pottakkal, S. Vatsal, S. Mishra, V.B. Singh. Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. J. Glaciol., 66 (2020), pp. 727-741,
CrossRef
Google scholar
|
A. Mandal, T. Angchuk, M.F. Azam, A. Ramanathan, P. Wagnon, M. Soheb, C. Singh. An 11-year record of wintertime snow-surface energy balance and sublimation at 4863 m a.s.l. on the Chhota Shigri Glacier moraine (Western Himalaya, India). Cryosphere, 16 (2022), pp. 3775-3799,
CrossRef
Google scholar
|
H.B. Mann. Nonparametric tests against trend. Econometrica, 13 (1945), p. 245,
CrossRef
Google scholar
|
J.M. Maurer, J.M. Schaefer, S. Rupper, A. Corley. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 5 (2019), Article eaav7266,
CrossRef
Google scholar
|
S. Muhammad, A. Thapa. An improved Terra-Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data, 12 (2020), pp. 345-356,
CrossRef
Google scholar
|
J.E. Nash, J.V. Sutcliffe. River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol., 10 (1970), pp. 282-290,
CrossRef
Google scholar
|
H.S. Negi, A. Kumar, N. Kanda, N.K. Thakur, K.K. Singh. Status of glaciers and climate change of East Karakoram in early twenty-first century. Sci. Total Environ., 753 (2021), Article 141914,
CrossRef
Google scholar
|
S. Nepal, P. Krause, W.-A. Flügel, M. Fink, C. Fischer. Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol. Process., 28 (2014), pp. 1329-1344,
CrossRef
Google scholar
|
J. Oerlemans, B. Anderson, A. Hubbard, P. Huybrechts, T. Jóhannesson, W.H. Knap, M. Schmeits, A.P. Stroeven, R.S.W. Van De Wal, J. Wallinga, Z. Zuo. Modelling the response of glaciers to climate warming. Clim. Dyn., 14 (1998), pp. 267-274,
CrossRef
Google scholar
|
F. Pellicciotti, C. Buergi, W.W. Immerzeel, M. Konz, A.B. Shrestha. Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mt. Res. Dev., 32 (2012), pp. 39-50,
CrossRef
Google scholar
|
S. Prakash. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J. Hydrol., 571 (2019), pp. 50-59,
CrossRef
Google scholar
|
S. Ragettli, F. Pellicciotti, R. Bordoy, W.W. Immerzeel. Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change: sources of uncertainty in glaciohydrological modeling. Water Resour. Res., 49 (2013), pp. 6048-6066,
CrossRef
Google scholar
|
D.R. Rounce, R. Hock, F. Maussion, R. Hugonnet, W. Kochtitzky, M. Huss, E. Berthier, D. Brinkerhoff, L. Compagno, L. Copland, D. Farinotti, B. Menounos, R.W. McNabb. Global glacier change in the 21st century: every increase in temperature matters. Science, 379 (2023), pp. 78-83,
CrossRef
Google scholar
|
D. Scherler, W. Hendrik, N. Gorelick. Global Assessment of Supraglacial Debris-Cover Extent. Geophys. Res. Lett., 45 (2018), pp. 11-798,
CrossRef
Google scholar
|
P.K. Sen. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc., 63 (1968), pp. 1379-1389,
CrossRef
Google scholar
|
J.M. Shea, W.W. Immerzeel. An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush-Himalaya. Ann. Glaciol., 57 (2016), pp. 308-318,
CrossRef
Google scholar
|
J.M. Shea, P. Wagnon, W.W. Immerzeel, R. Biron, F. Brun, F. Pellicciotti. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. Int. J. Water Resour. Dev., 31 (2015), pp. 174-200,
CrossRef
Google scholar
|
P. Singh, S.K. Jain. Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrol. Sci. J., 47 (2002), pp. 93-106,
CrossRef
Google scholar
|
P. Singh, S.K. Jain. Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrol. Sci. J., 48 (2003), pp. 257-276,
CrossRef
Google scholar
|
P. Singh, M. Arora, N.K. Goel. Effect of climate change on runoff of a glacierized Himalayan basin. Hydrol. Process., 20 (2006), pp. 1979-1992,
CrossRef
Google scholar
|
P. Singh, U.K. Haritashya, N. Kumar. Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas / Modélisation et estimation des différentes composantes de l’écoulement fluviatile du bassin du Glacier Gangotri, Himalaya. Hydrol. Sci. J., 53 (2008), pp. 309-322,
CrossRef
Google scholar
|
P. Singh, N. Kumar. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J. Hydrol., 193 (1997), pp. 316-350,
CrossRef
Google scholar
|
P. Singh, K.S. Ramasastri, N. Kumar, M. Arora. Correlations between discharge and meteorological parameters and runoff forecasting from a highly glacierized Himalayan basin. Hydrol. Sci. J., 45 (2000), pp. 637-652,
CrossRef
Google scholar
|
M. Soheb, P. Bastian, S. Schmidt, S. Singh, H. Kaushik, A. Ramanathan, M. Nüsser. Surface and subsurface flow of a glacierised catchment in the cold-arid region of Ladakh, Trans-Himalaya. J. Hydrol., 635 (2024), Article 131063,
CrossRef
Google scholar
|
S. Srivastava, P.K. Garg, M.F. Azam. Seven decades of dimensional and mass balance changes on Dokriani Bamak and Chhota Shigri Glaciers, Indian Himalaya, using satellite data and modelling. J. Indian Soc. Remote Sens., 50 (2022), pp. 37-54,
CrossRef
Google scholar
|
A.A. Tahir, P. Chevallier, Y. Arnaud, L. Neppel, B. Ahmad. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol., 409 (2011), pp. 104-117,
CrossRef
Google scholar
|
W. Terink, A.F. Lutz, G.W.H. Simons, W.W. Immerzeel, P. Droogers. SPHY v2.0: Spatial Processes in HYdrology. Geosci. Model Dev., 8 (2015), pp. 2009-2034,
CrossRef
Google scholar
|
R.J. Thayyen, J.T. Gergan. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment" Cryosphere, 4 (2010), pp. 115-128,
CrossRef
Google scholar
|
J.C. Van Dam, P. Groenendijk, R.F.A. Hendriks, J.G. Kroes. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J., 7 (2008), pp. 640-653,
CrossRef
Google scholar
|
Vatsal, S., Bhardwaj, A., Azam, M.F., Mandal, A., Ramanathan, A., Bahuguna, I., Raju, N.J., Tomar, S.S., 2022. A comprehensive multidecadal glacier inventory dataset for the Chandra-Bhaga Basin, Western Himalaya, India (preprint). ESSD – Ice/Glaciology. doi:10.5194/essd-2022-311.
|
P. Vinze, M.F. Azam. On the transferability of snowmelt runoff model parameters: discharge modeling in the Chandra-Bhaga Basin, western Himalaya. Front. Water, 4 (2023), Article 1086557,
CrossRef
Google scholar
|
P. Wagnon, A. Linda, Y. Arnaud, R. Kumar, P. Sharma, C. Vincent, J.G. Pottakkal, E. Berthier, A. Ramanathan, S.I. Hasnain, P. Chevallier. Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J. Glaciol., 53 (2007), pp. 603-611,
CrossRef
Google scholar
|
J. Yao, Y. Chen, X. Guan, Y. Zhao, J. Chen, W. Mao. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev., 226 (2022), Article 103957,
CrossRef
Google scholar
|
M. Zemp, M. Huss, E. Thibert, N. Eckert, R. McNabb, J. Huber, M. Barandun, H. Machguth, S.U. Nussbaumer, I. Gärtner-Roer, L. Thomson, F. Paul, F. Maussion, S. Kutuzov, J.G. Cogley. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568 (2019), pp. 382-386,
CrossRef
Google scholar
|
RGI 7.0 Consortium, 2023. Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 7.0. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi:10.5067/f6jmovy5navz. Online access: https://doi.org/10.5067/f6jmovy5navz.
|
https://cwc.gov.in/mco/discharge-observation https://cwc.gov.in/mco/discharge-observation; last assessed on 27 June 2024.
|
https://www.futurewater.eu/projects/hihydrosoil/ https://www.futurewater.eu/projects/hihydrosoil/; last assessed on 27 June 2024.
|
/
〈 |
|
〉 |