Long-term daily water temperatures unveil escalating water warming and intensifying heatwaves in the Odra river Basin, Central Europe
Jiang Sun, Fabio Di Nunno, Mariusz Sojka, Mariusz Ptak, Quan Zhou, Yi Luo, Senlin Zhu, Francesco Granata
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101916.
Long-term daily water temperatures unveil escalating water warming and intensifying heatwaves in the Odra river Basin, Central Europe
Water temperature is a critical indicator and weathervane of aquatic ecosystems. However, the vast majority of rivers lack long-term continuous and complete water temperature datasets. In this study, ensemble models by combining NARX (nonlinear autoregressive network with exogenous inputs) and air2stream were used to reconstruct daily river water temperatures for 27 hydrological stations in the Odra River Basin, one of the largest river systems in Europe. For each hydrological station, both the NARX and air2stream models were calibrated and validated, and the better-performed model was selected to reconstruct daily river water temperatures from 1985 to 2022. The results showed that hybrid modeling by combining NARX and air2stream is promising for reconstructing daily river water temperatures. Based on the reconstructed dataset, annual and seasonal trends of water temperature and characteristics of river heatwaves were evaluated. The results indicated that annual river water temperatures showed a consistent warming trend over the past 40 years with an average warming rate of 0.315 °C/decade. Seasonal river water temperatures indicated that summer warms faster, followed by autumn and spring, and winter river water temperatures showed an insignificant warming trend. River heatwaves are increased in frequency, duration, and intensity in the Odra River Basin, and 6 out of 27 hydrological stations have river heatwaves categorized as ‘severe’ and ‘extreme’, suggesting that mitigation measures are needed to reduce the impact of climate warming on aquatic systems. Moreover, results showed that air temperature is the major controller of river heatwaves, and river heatwaves tend to intensify with the warming of air temperatures.
River water temperature / Ensemble modeling / Annual variation / Seasonal pattern / River heatwaves
M.C. Almeida, P.S. Coelho. Modeling river water temperature with limiting forcing data: air2stream v1. 0.0, machine learning and multiple regression. Geosci. Model Dev., 16 (14) (2023), pp. 4083-4112
|
G. Bal, E. de Eyto. Simple Bayesian reconstruction and forecasting of stream water temperature for ecologists—a tool using air temperature, optionally flow, in a time series decomposition approach. PLoS One, 18 (9) (2023), p. e0291239
|
L. Benyahya, D. Caissie, A. St-Hilaire, T.B. Ouarda, B. Bobée. A review of statistical water temperature models. Can. Water Resour. J., 32 (3) (2007), pp. 179-192
|
D. Caissie. The thermal regime of rivers: a review. Freshw. Biol., 51 (8) (2006), pp. 1389-1406
|
D. Chen, M. Hu, Y. Guo, R.A. Dahlgren. Changes in river water temperature between 1980 and 2012 in Yongan watershed, eastern China: magnitude, drivers and models. J. Hydrol., 533 (2016), pp. 191-199
|
D.S. Cunningham, D.C. Braun, J.W. Moore, A.M. Martens. Forestry influences on salmonid habitat in the North Thompson River watershed, British Columbia. Can. J. Fish. Aquat. Sci., 80 (7) (2023), pp. 1053-1070
|
F. Di Nunno, M. Race, F. Granata. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers. Environ. Sci. Pollut. Res., 29 (2022), pp. 40623-40642
|
F. Di Nunno, S. Zhu, M. Ptak, M. Sojka, F. Granata. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Sci. Total Environ., 890 (2023), Article 164323
|
P. Dion, J.L. Martel, R. Arsenault. Hydrological ensemble forecasting using a multi-model framework. J. Hydrol., 600 (2021), Article 126537
|
Q. Duan, N.K. Ajami, X. Gao, S. Sorooshian. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30 (5) (2007), pp. 1371-1386
|
S.J. Dugdale, D.M. Hannah, I.A. Malcolm. River temperature modelling: a review of process-based approaches and future directions. Earth Sci. Rev., 175 (2017), pp. 97-113
|
M. Feigl, K. Lebiedzinski, M. Herrnegger, K. Schulz. Machine learning methods for stream water temperature prediction. Hydrol. Earth Syst. Sci., 25 (2021), pp. 2951-2977
|
M. Feng, G. Zolezzi, M. Pusch. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Sci. Total Environ., 612 (2018), pp. 1266-1275
|
Foresee, F.D, Hagan, M.T. 1997. Gauss-Newton approximation to Bayesian learning. In: Proceedings of the International Joint Conference on Neural Networks.
|
G. Gao, J. Li, P. Feng, J. Liu, Y. Wang. How extreme hydrological events correspond to climate extremes in the context of global warming: a case study in the Luanhe River Basin of North China. Int. J. Climatol., 44 (7) (2024), pp. 2391-2405,
CrossRef
Google scholar
|
J. Gizińska, M. Sojka. How climate change affects river and lake water temperature in Central-West Poland—A case study of the Warta River Catchment. Atmosphere, 14 (2023), p. 330
|
A.J. Hobday, L.V. Alexander, S.E. Perkins, D.A. Smale, S.C. Straub, E.C. Oliver, J.A. Benthuysen, M.T. Burrows, M.G. Donat, M. Feng, N.J. Holbrook. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141 (2016), pp. 227-238
|
F. Huang, B. Qian, C.G. Ochoa. Long-term river water temperature reconstruction and investigation: a case study of the Dongting Lake Basin, China. J. Hydrol., 616 (2023), Article 128857
|
R. Itsukushima, K. Ohtsuki, T. Sato. Drivers of rising monthly water temperature in river estuaries. Limnol. Oceanogr., 69 (3) (2024), pp. 589-603
|
M.F. Johnson, L.K. Albertson, A.C. Algar, S.J. Dugdale, P. Edwards, J. England, C. Gibbins, S. Kazama, D. Komori, A.D. MacColl, E.A. Scholl. Rising water temperature in rivers: ecological impacts and future resilience. Wiley Interdiscip. Rev.: Water (2024), p. e1724
|
S.S. Kaushal, G.E. Likens, N.A. Jaworski, M. Pace, A.M. Sides, D. Seekell, K.T. Belt, D.H. Secor, R.L. Wingate. Rising stream and river temperatures in the United States. Front. Ecol. Environ., 8 (9) (2010), pp. 461-466
|
C.L. Laizé, C. Bruna Meredith, M.J. Dunbar, D.M. Hannah. Climate and basin drivers of seasonal river water temperature dynamics. Hydrol. Earth Syst. Sci., 21 (6) (2017), pp. 3231-3247
|
D.J.C. MacKay. Bayesian Interpolation. Neural Comput., 4 (1992), pp. 415-447
|
O. Mohseni, H.G. Stefan. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol., 218 (1999), pp. 128-141
|
Nguma, R.K., Kiluva, V.M. 2022. Management of extreme hydrological events. Climate Impacts on Extreme Weather: Current to Future Changes on a Local to Global Scale, 271-2861.
|
G.H. Niedrist. Substantial warming of Central European mountain rivers under climate change. Reg. Environ. Chang., 23 (1) (2023), p. 43
|
F. Olsson, T.N. Moore, C.C. Carey, A. Breef-Pilz, R.Q. Thomas. A multi-model ensemble of baseline and process-based models improves the predictive skill of near-term lake forecasts. Water Resour. Res., 60 (3) (2024)
|
P. Pedreros, M. Guevara-Mora, R. Urrutia, A. Stehr. The importance of Nothofagus dombeyi (Mirb.) Oerst. riparian vegetation in the thermal regime of Andean streams of Southern Chile. Gayana - Botanica, 73 (1) (2016), pp. 32-41
|
M. Ptak. Wpływ zalesienia na temperaturę wody w rzece. Leśne Prace Badawcze, 78 (3) (2017), pp. 251-256
|
M. Ptak, A. Choiński, J. Kirviel. Long-term water temperature fluctuations in coastal rivers (Southern Baltic) in Poland. Bull. Geogr. Phys. Geogr. Ser., 11 (2016), pp. 35-42
|
M. Ptak, M. Sojka, R. Graf, A. Choiński, S. Zhu, B. Nowak. Warming Vistula River–the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. J. Hydrol. Hydromech., 70 (1) (2022), pp. 1-11
|
R. Qiu, Y. Wang, B. Rhoads, D. Wang, W. Qiu, Y. Tao, J. Wu. River water temperature forecasting using a deep learning method. J. Hydrol., 595 (2021), Article 126016
|
B.M. Renöfält, R. Jansson, C. Nilsson. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol., 55 (1) (2010), pp. 49-67
|
C. Sánchez-García, M. Francos. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geogr. Sustain., 3 (3) (2022), pp. 232-236
|
Schernewski, G., Neumann, T. 2002. Perspectives on eutrophication abatement in the Baltic Sea, in Littoral 2002: The Changing Coast, Vol. 2, ed. EUROCOAST/EUCC (Portugal: EUROCAST), 503-511.
|
R.R. Shrestha, J.C. Pesklevits. Reconstructed river water temperature dataset for Western Canada 1980–2018. Data, 8 (3) (2023), p. 48
|
R.R. Shrestha, J.C. Pesklevits, B.R. Bonsal, R. Brannen, T. Guo, S. Hoffman. Rising summer river water temperature across Canada: spatial patterns and hydroclimatic controls. Environ. Res. Lett., 19 (2024), Article 044058
|
J. Sobieraj, D. Metelski. Insights into toxic Prymnesium parvum blooms as a cause of the ecological disaster on the Odra river. Toxins, 15 (2023), p. 403
|
M. Sojka, M. Ptak. Possibilities of river water temperature reconstruction using statistical models in the context of long-term thermal regime changes assessment. Appl. Sci., 12 (15) (2022), p. 7503
|
H.G. Stefan, E.B. Preud'homme. Stream temperature estimation from air temperature. J. Am. Water Resour. Assoc., 29 (1) (1993), pp. 27-45
|
J. Sun, F. Di Nunno, M. Sojka, M. Ptak, Y. Luo, R. Xu, J. Xu, Y. Luo, S. Zhu, F. Granata. Prediction of daily river water temperatures using an optimized model based on NARX networks. Ecol. Ind., 161 (2024), Article 111978
|
A. Szlauer-Łukaszewska, Ławicki, J. Engel, E. Drewniak, K. Ciężak, D. Marchowski. Quantifying a mass mortality event in freshwater wildlife within the Lower Odra River: Insights from a large European river. Sci. Total Environ., 907 (2024), Article 167898
|
Y. Tao, Y. Wang, D. Wang, L. Ni, J. Wu. A C-vine copula framework to predict daily water temperature in the Yangtze River. J. Hydrol., 598 (2021), Article 126430
|
S.J. Tassone, A.F. Besterman, C.D. Buelo, D.T. Ha, J.A. Walter, M.L. Pace. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett., 8 (2) (2023), pp. 295-304
|
J.R. Thompson, S.N. Gosling, J. Zaherpour, C.L.R. Laizé. Increasing risk of ecological change to major rivers of the world with global warming. Earth’s Future, 9 (11) (2021)
|
K. Tockner, D. Tonolla, V. Bremerich, S.C. Jahnig, C.T. Robinson, C. Zarfl. Introduction to European Rivers. K. Tockner, C. Zarfl, C.T. Robsinson (Eds.), Rivers of Europe, Elsevier, London (2022), pp. 1-26
|
M. Toffolon, S. Piccolroaz. A hybrid model for river water temperature as a function of air temperature and discharge. Environ. Res. Lett., 10 (11) (2015), Article 114011
|
T. Tokarczyk. Classification of low flow and hydrological drought for a river basin. Acta Geophys., 61 (2) (2013), pp. 404-421
|
H. Trimmel, P. Weihs, D. Leidinger, H. Formayer, G. Kalny, A. Melcher. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?. Hydrol. Earth Syst. Sci., 22 (1) (2018), pp. 437-461
|
J.A. Velázquez, F. Anctil, C. Perrin. Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments. Hydrol. Earth Syst. Sci., 14 (11) (2010), pp. 2303-2317
|
S.M. Vicente-Serrano, J. Zabalza-Martínez, G. Borràs, J.I. López-Moreno, E. Pla, D. Pascual, R. Savé, C. Biel, I. Funes, C. Azorin-Molina, M. Tomas-Burguera, A. El Kenawy. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J. Hydrol.: Reg. Stud., 12 (2017), pp. 13-32
|
X. Wang, K. Shi, Y. Zhang, B. Qin, Y. Zhang, W. Wang, R.I. Woolway, S. Piao, E. Jeppesen. Climate change drives rapid warming and increasing heatwaves of lakes. Sci. Bull., 68 (14) (2023), pp. 1574-1584
|
B.W. Webb. Trends in stream and river temperature. Hydrol. Process., 10 (2) (1996), pp. 205-226
|
R.I. Woolway, E. Jennings, T. Shatwell, M. Golub, D.C. Pierson, S.C. Maberly. Lake heatwaves under climate change. Nature, 589 (7842) (2021), pp. 402-407
|
S.A. Wright, C.R. Anderson, N. Voichick. A simplified water temperature model for the Colorado River below Glen Canyon Dam. River Res. Appl., 25 (6) (2009), pp. 675-686
|
T. Zabolotnia. Estimation of the long-term tendencies and homogeneity of the average annual water temperature and air temperature in the Siverskyi Donets River Basin (within Ukraine). J. Fund. Appl. Sci., 10 (2018), pp. 1-22
|
S. Zhu, Y. Luo, R. Graf, D. Wrzesiński, M. Sojka, B. Sun, L. Kong, Q. Ji, W. Luo. Reconstruction of long-term water temperature indicates significant warming in Polish rivers during 1966–2020. J. Hydrol.: Reg. Stud., 44 (2022), Article 101281
|
S. Zhu, F. Di Nunno, M. Ptak, M. Sojka, F. Granata. A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave. Sci. Total Environ., 905 (2023), Article 167121
|
S. Zhu, F. Di Nunno, J. Sun, M. Sojka, M. Ptak, F. Granata. An optimized NARX-based model for predicting thermal dynamics and heatwaves in rivers. Sci. Total Environ., 926 (2024), Article 171954
|
S. Zhu, A.P. Piotrowski. River/stream water temperature forecasting using artificial intelligence models: a systematic review. Acta Geophys., 68 (2020), pp. 1433-1442
|
/
〈 |
|
〉 |