Early terrestrial and lunar anorthosites: Comparative geochemistry and evolutionary processes
Paul Sotiriou, Ali Polat, Tim Kusky, Brian F. Windley
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101914.
Early terrestrial and lunar anorthosites: Comparative geochemistry and evolutionary processes
In a paper in 1970, Brian Windley first recognised that early terrestrial and lunar anorthosites both have calcic plagioclase, and low TiO2 and high CaO and Al2O3 contents. Despite these similarities, the geochemistry of early terrestrial and lunar anorthosites has not been rigorously compared and contrasted. To this end, we compiled 425 analyses from 212 early terrestrial anorthosite occurrences and 306 analyses from 16 lunar anorthosite occurrences. This was supplemented by a compilation of plagioclase anorthite (An) contents and pyroxene Mg# from early terrestrial and lunar anorthosites. Early terrestrial anorthosites have lower whole-rock An contents but similar Mg# to lunar anorthosites. The CaO contents of lunar anorthosites are higher than those of early terrestrial anorthosites for a given MgO and Al2O3 content, early terrestrial anorthosites have higher SiO2 contents than lunar anorthosites at a given MgO content, and lunar anorthosites have higher Eu/Eu* anomaly ratios yet broadly similar La/Yb and Nd/Sm ratios than early terrestrial anorthosites. Some early terrestrial anorthosites have less fractionated chondrite-normalised rare earth element (REE) patterns and less prominent positive Eu anomalies than lunar anorthosites. Lunar anorthosites have higher plagioclase An contents, yet a similar range of pyroxene Mg# compared to their early terrestrial counterparts. Some early terrestrial anorthosites are more fractionated than some lunar anorthosites. Our interpretations imply that most early terrestrial anorthosites crystallised from basaltic parental magmas that were generated by high-degree partial melting of sub-arc asthenosphere mantle wedge sources that were hydrated by slab-derived fluids, with the remainder being associated with mid-ocean ridge and mantle plume settings. Some of the arc-related early terrestrial anorthosites were influenced by crustal contamination. In addition, early terrestrial anorthosites originated from partial melting of the mantle at various depths with variable garnet residua, whereas lunar anorthosites formed without any significant garnet residua. Lower plagioclase CaO contents and pyroxene Mg# in early terrestrial anorthosites can be explained by higher proportions of clinopyroxene and olivine fractionation in terrestrial magma chambers than in the lunar magma ocean where orthopyroxene and olivine fractionation occurred. Low TiO2 contents in both terrestrial and lunar anorthosites reflect rutile and/or ilmenite fractionation.
Early terrestrial anorthosites / Lunar anorthosites / Geochemistry / Mineral chemistry
K.S. Anoop, Y. Anilkumar, M. Santosh, B. Yu, K.D. Joy, K.V. Kavyanjali, A. Sathyan, A. Mathew, K.S. Sajinkumar. Magmatic and metamorphic evolution of a layered gabbro-anorthosite complex from the Coorg Block, southern India: Implications for Mesoarchean suprasubduction zone process. Gondw. Res., 103 (2022), pp. 105-134
|
Arestova, N.A., Lobach-Zhuchenko, S.B., Chekulaev, V.P., Gus’Kova, E.G., 2003. Early Precambrian mafic rocks of the Fennoscandian shield as a reflection of plume magmatism: Geochemical types and formation stages. Russian Journal of Earth Sciences 5(3), 145-163.
|
L.D. Ashwal. The temporality of anorthosites. Can. Mineral., 48 (4) (2010), pp. 711-728
|
Ashwal, L.D., Myers, J.S., 1994. Archean anorthosites. In: Condie, K.C. (ed). Archean Crustal Evolution. Elsevier: Amsterdam, Developments in Precambrian Geology 11, 315-355.
|
L.D. Ashwal, G.M. Bybee. Crustal evolution and the temporality of anorthosites. Earth Sci. Rev., 173 (2017), pp. 307-330
|
L.D. Ashwal, D.A. Morrison, W.C. Phinney, J. Wood. Origin of Archean anorthosites: Evidence from the Bad Vermilion Lake anorthosite complex, Ontario. Contrib. Miner. Petrol., 82 (1983), pp. 259-273
|
L.D. Ashwal, J.L. Wooden, W.C. Phinney, D.A. Morrison. Sm-Nd and Rb-Sr isotope systematics of an Archean anorthosite and related rocks from the Superior Province of the Canadian Shield. Earth Planet. Sci. Lett., 74 (1985), pp. 338-346
|
Ashwal, L.D., 1993. Anorthosites. Springer-Verlag: Berlin, Germany, Minerals and Rocks 21, 422 pp.
|
Y.A. Balashov, T.B. Bayanova, F.P. Mitrofanov. Isotopic data on the age and genesis of layered basic-ultrabasic intrusions in the Kola Peninsula and northern Karelia, northeastern Baltic Shield. Precambr. Res., 64 (1993), pp. 197-205
|
J.H. Bédard. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta, 70 (2006), pp. 1188-1214
|
J.H. Bédard. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front., 9 (2018), pp. 19-49
|
J.H. Bédard, P. Brouillette, L. Madore, A. Berclaz. Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precambr. Res., 127 (2003), pp. 61-87
|
J.H. Bédard, F. Leclerc, L.B. Harris, N. Goulet. Intra-sill magmatic evolution in the Cummings Complex, Abitibi greenstone belt: Tholeiitic to calc-alkaline magmatism recorded in an Archaean subvolcanic conduit system. Lithos, 111 (2009), pp. 47-71
|
J.H. Bédard, L.B. Harris, P.C. Thurston. The hunting of the snArc. Precambr. Res., 229 (2013), pp. 20-48
|
J. Berger, H. Diot, K. Lo, D. Ohnenstetter, O. Féménias, M. Pivin, D. Demaiffe, A. Bernard, B. Charlier. Petrogenesis of Archean PGM-bearing chromitites and associated ultramafic–mafic–anorthositic rocks from the Guelb el Azib layered complex (West African craton, Mauritania). Precambr. Res., 224 (2013), pp. 612-628
|
A.E. Boudreau. Crystal aging and the formation of fine-scale igneous layering. Mineral. Petrol., 54 (1995), pp. 55-69
|
A.E. Boudreau. The Stillwater Complex, Montana – Overview and the significance of volatiles. Mineral. Mag., 80 (4) (2016), pp. 585-637
|
N.L. Bowen. The problem of the anorthosites. J. Geol., 25 (3) (1917), pp. 209-243
|
M. Brown, T. Johnson, N.J. Gardiner. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci., 48 (2020), pp. 291-320
|
R.W. Carlson, G.W. Lugmair. The age of ferroan anorthosite 66025: oldest crust on a young Moon?. Earth Planet. Sci. Lett., 90 (1988), pp. 119-130
|
B.W. Chappell, A.J.R. White. Further data on an ‘eclogite’ from the Sittampundi Complex. India. Mineralogical Magazine, 37 (289) (1970), pp. 555-560
|
G.X. Chen, T. Kusky, L. Luo, Q.K. Li, Q.M. Cheng. Hadean tectonics: Insights from machine learning. Geology, 51 (2023), pp. 718-722
|
C.G. Couëslan. Preliminary results from bedrock mapping in the northeastern Cauchon Lake area, eastern margin of the Pikwitonei granulite domain, central Manitoba (parts of NTS 63P9, 10). Report of Activities 2013, Manitoba Mineral Resources, Manitoba Geological Survey (2013), pp. 23-33
|
C.G. Couëslan. Preliminary results from bedrock mapping in the Armstrong Lake area, Pikwitonei granulite domain, central Manitoba (parts of NTS 63P10, 11). Report of Activities 2014, Manitoba Mineral Resources, Manitoba Geological Survey (2014), pp. 7-17
|
C.G. Couëslan, C.O. Böhm, T. Martins. Preliminary results from geological mapping in the central Sipiwesk Lake area, Pikwitonei Granulite Domain, central Manitoba (parts of NTS 63P4). Report of Activities 2012, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey (2012), pp. 79-89
|
De Wit, M., Ashwal, L.D., 1997. Greenstone Belts. Clarendon Press: Oxford, U.K., Oxford Monographs on Geology and Geophysics 35, 809 pp.
|
C.V. Dharma Rao, B.F. Windley, A.K. Choudhary. The Chimalpahad anorthosite complex and associated basaltic amphibolites. Nellore Schist Belt, India: Magma chamber and roof of a Proterozoic island arc. J. Asian Earth Sci., 40 (2011), pp. 1027-1043
|
C.V. Dharma Rao, M. Santosh, K. Sajeev, B.F. Windley. Chromite-silicate chemistry of the Neoarchean Sittampundi Complex, southern India: Implications for subduction-related arc magmatism. Precambr. Res., 227 (2013), pp. 259-275
|
D. Dhingra, C.M. Pieters, J.W. Boardman, J.W. Head, P.J. Isaacson, L.A. Taylor. Compositional diversity at Theophilus Crater: Understanding the geological context of Mg-spinel-bearing central peaks. Geophys. Res. Lett., 38 (2011), p. L11201, 10.1029/2011GL047314
|
E. Dowty, M. Prinz, J. Keil. Ferroan anorthosite: a widespread and distinctive lunar rock type. Earth Planet. Sci. Lett., 24 (1974), pp. 15-25
|
Dutta, U., Uttam, K., Bhui, Sengupta, P., Sanyal, S., Mukhopadhyay, D., 2011. Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi Layered Complex, Tamil Nadu, India. Ore Geology Reviews 40, 90-107.
|
C. François, P. Philippot, P. Rey, D. Rubatto. Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth Planet. Sci. Lett., 396 (2014), pp. 235-251
|
B. Ghosh, R. Konar. Chromites from meta-anorthosites, Sittampundi layered igneous complex, Tamil Nadu, southern India. J. Asian Earth Sci., 42 (6) (2011), pp. 1394-1402
|
B. Ghosh, R. Konar. Textural developments in chromite deforming under eclogite-facies conditions from the Neoarchaean Sittampundi anorthosite complex. Geol. J., 47 (2–3) (2012), pp. 253-262
|
W.B. Hamilton. Archean magmatism and deformation were not products of plate tectonics. Precambr. Res., 91 (1998), pp. 143-179
|
W.B. Hamilton. Plate tectonic began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, 123 (1–4) (2011), pp. 1-20
|
B.B. Hanan, G.R. Tilton. 60025: relict of primitive lunar crust?. Earth Planet. Sci. Lett., 84 (1987), pp. 15-21
|
T.M. Harrison. We don’t know when plate tectonics began. J. Geol. Soc. Lond. (2024), 10.1144/jgs2023
|
Hartlaub, R.P., Kuiper, Y.D., 2004. Geology of central and north Split Lake (parts of NTS 54D4, 5 and 64A1, 8). Manitoba. Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, Preliminary Map PMAP2004-1, scale 1:25000.
|
Haskin, L.A., Helmke, P.A., Blanchard, D.P., Jacobs, J.W., Telander, K., 1973. Major and trace element abundances in samples from the lunar highlands. In: Proceedings of the 4th Lunar and Planetary Science Conference. Geochimica et Cosmochimica Acta Supplement 4, 1275-1296.
|
Haskin, L.A., Lindstrom, M.M., Salpas, P.A., Lindstrom, D.J., 1981. On compositional variations among lunar anorthosites. In: Proceedings of the 12th Lunar and Planetary Science Conference. Geochimica et Cosmochimica Acta Supplement 16, 41-66.
|
A.R. Hastie, J.G. Fitton. Eoarchaean tectonics: New constraints from high pressure-temperature experiments and mass balance modelling. Precambr. Res., 325 (2019), pp. 20-38
|
H.-L. He, Y.-Q. Wang, P.M. George, K. Sajeev, J.-H. Guo, C.-K. Lai, M.-G. Zhai. Formation of ∼2.5 Ga Sittampundi anorthosite complex in southern India: Implications to lower crustal stabilization of the Dharwar Craton. Precambr. Res., 106012 (2020), 10.1016/j.precamres.2020.106012
|
M.D. Higgins. A new model for the structure of the Sept Iles intrusive suite, Canada. Lithos, 83 (2005), pp. 199-213
|
M.D. Higgins. Textural coarsening in igneous rocks. Int. Geol. Rev., 53 (2011), pp. 354-376
|
J.E. Hoffmann, H. Svahnberg, S. Piazolo, A. Scherstén, C. Muenker. The geodynamic evolution of Mesoarchean anorthosite complexes inferred from the Naajat Kuuat Complex, southern West Greenland. Precambr. Res., 196 (2012), pp. 149-170
|
W. Hsu, A. Zhang, R. Bartoschewitz, Y. Guan, T. Ushikubo, U. Kraehenbuehl, R. Niedergesaess, R. Pepelnik, U. Reus, T. Kurtz, P. Kurtz. Petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300. Meteorit. Planet. Sci., 43 (8) (2008), pp. 1363-1381
|
H. Huang, A. Polat, B.J. Fryer, P.W.U. Appel, B.F. Windley. Geochemistry of the Mesoarchean Fiskenæsset Complex at Majorqap qâva, SW Greenland: Evidence for two different magma compositions. Chem. Geol., 314–317 (2012), pp. 66-82
|
H. Huang, A. Polat, B.J. Fryer. Origin of Archean tonalite-trondhjemite-granodiorite (TTG) suites and granites in the Fiskenæsset region, southern West Greenland: Implications for continental growth. Gondw. Res., 23 (2013), pp. 452-470
|
H. Huang, B.J. Fryer, A. Polat, Y. Pan. Amphibole, plagioclase and clinopyroxene geochemistry of the Archean Fiskenæsset Complex at Majorqap qâva, southwestern Greenland: Implications for Archean petrogenetic and geodynamic processes. Precambr. Res., 247 (2014), pp. 64-91
|
James, O.B., Flohr, M.K., Lindstrom, M.M., 1984. Petrology and geochemistry of lunar dimict breccia 61015. In: Proceedings of the 15th Lunar and Planetary Science Conference, Part 1. Journal of Geophysical Research 89 (Supplement), C63-C86.
|
T.E. Johnson, M. Brown, B.J.P. Kaus, J.A. Van Tongeren. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci., 7 (2014), pp. 47-52
|
B.L. Joliff, L.A. Haskin. Cogenetic rock fragments from a lunar soil: evidence of a ferroan anorthositic pluton on the Moon. Geochim. Cosmochim. Acta, 59 (1995), pp. 2345-2374
|
K. Keil, G. Kurat, M. Prinz, J.A. Green. Lithic fragments, glasses and chondrules from Luna 16 fines. Earth Planet. Sci. Lett., 13 (1972), pp. 243-256
|
C. Koeberl, G. Kurat, F. Brandstätter. Mineralogy and geochemistry of lunar meteorite Queen Alexandra Range 93069. Meteorit. Planet. Sci., 31 (6) (1996), pp. 897-908
|
T. Komiya, S. Yamamoto, S. Aoki, Y. Sawaki, A. Ishikawa, T. Tashiro, K. Koshida, M. Shimojo, K. Aoki, K.D. Collerson. Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics, 662 (2015), pp. 40-66
|
S. Kommescher, F. Kurzweil, R.O. Fonseca, L.J.A. Rzehak, S.V. Hohl, M. Kirchenbaur, S. Schuth, P. Sprung, C. Münker. Mineralogical controls on the Ti isotope composition of subduction zone magmas. Geochem. Geophys. Geosyst., 24 (8) (2023), 10.1029/2022GC010840
|
R.L. Korotev, B.L. Jolliff, R.A. Zeigler, J.J. Gillis, L.A. Haskin. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta, 67 (24) (2003), pp. 4895-4923
|
N.M. Kudryashov, A.V. Mokrushin. Mesoarchean gabbroanorthosite magmatism of the Kola Region: Petrochemical, geochronological, and isotope-geochemical data. Petrology, 19 (2) (2011), pp. 167-182
|
T.M. Kusky, B.F. Windley, A. Polat. Geological evidence for the operation of plate tectonics throughout the Archean: Records from Archean paleo-plate boundaries. J. Earth Sci., 29 (6) (2018), pp. 1291-1303, 10.1007/s12583-018-0999-6
|
T.M. Kusky, B.F. Windley, A. Polat, L. Wang, W.B. Ning, Y.T. Zhong. Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth Sci. Rev., 220 (2021), Article 103725, 10.1016/j.earscirev.2021.103725
|
D. Lenaz, B. Maibam, J. Adetunji, H. Skogby. The effects of high-grade metamorphism on Cr-spinel from the Archean Sittampundi Complex. South India. Minerals, 11 (2021), p. 1370, 10.3390/min11121370
|
M.M. Lindstrom, S.J. Wentworth, R.R. Martinez, D.W. Mittlefehldt, D.S. McKay, W. Ming-Sheng, M.E. Lipschutz. Geochemistry and petrography of the MacAlpine Hills lunar meteorites. Geochim. Cosmochim. Acta, 55 (11) (1991), pp. 3089-3103
|
Longhi, J., Ashwal, L.D., 1985. Two-stage models for lunar and terrestrial anorthosites: Petrogenesis without a magma ocean. In: Proceedings of the 15th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 90 (Supplement), C571-C584.
|
S.P. Marsh, M.E. Glicksman. Ostwald ripening in non-spherical morphologies. Mater. Sci. Eng. A, 238 (1) (1997), pp. 140-147
|
J.R. Masiero, B.J. Davidsson, Y. Liu, K. Moore, M. Tuite. Volatility of sodium in carbonaceous chondrites at temperatures consistent with low-perihelion asteroids. The Planetary Science Journal, 2 (4) (2021), p. 165, 10.3847/PSJ/ac0d02
|
C. Meyer. Lunar Sample Compendium. National Aeronautics and Space (2011)
|
C. Meyer. Lunar Sample Compendium. National Aeronautics and Space (2012)
|
H. Mouri, M.J. Whitehouse, G. Brandl, H.M. Rajesh. A magmatic age and four successive metamorphic events recorded in zircons from a single meta-anorthosite sample in the Central Zone of the Limpopo Belt, South Africa. J. Geol. Soc. Lond., 166 (5) (2009), pp. 827-830
|
J.S. Myers. Granitoid sheets, thrusting, and Archean crustal thickening in West Greenland. Geology, 4 (5) (1976), pp. 265-268
|
J.S. Myers. Oldest known terrestrial anorthosite at Mount Narryer, Western Australia. Precambr. Res., 38 (1988), pp. 309-323
|
J.S. Myers, I.R. Williams. Early Precambrian crustal evolution at Mount Narryer, Western Australia. Precambr. Res., 27 (1985), pp. 153-163
|
Myers, J.S., 1985. Stratigraphy and structure of the Fiskenæsset complex, southern West Greenland. Grønland Geologiske Undersøgelse Bulletin 150, 72 pp.
|
M.D. Norman, K. Keil, W.L. Griffin, C.G. Ryan. Fragments of ancient lunar crust: Petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the Moon. Geochim. Cosmochim. Acta, 59 (4) (1995), pp. 831-847
|
M.D. Norman, L.E. Borg, L.E. Nyquist, D.D. Bogard. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci., 38 (4) (2003), pp. 645-661
|
M.D. Norman, R.A. Duncan, J.J. Huard. Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta, 74 (2) (2010), pp. 763-783
|
L.E. Nyquist, W.U. Reimold, D.D. Bogard, J.L. Wooden, B.M. Bansal, J. Wiesmann, C.Y. Shih. A comparative Rb-Sr, Sm-Nd, and K-Ar study of shocked norite 78236: evidence for slow cooling in the lunar crust?. Geochimica et Cosmochimica Acta Supplement, 16, Proceedings of the 12th Lunar and Planetary Science Conference (1981), pp. 67-97
|
M.A.P. Paixão, E.P. Oliveira. The Lagoa da Vaca Anorthosite Complex: An Archaean layered anorthosite body on the western edge of the Uauá Block, Bahia. Brazil. Revista Brasileira De Geociencias, 28 (2) (1998), pp. 201-208
|
W.H. Peck, J.W. Valley. The Fiskenæsset anorthosite complex: stable isotope evidence for shallow emplacement into Archean ocean crust. Geology, 24 (1996), pp. 523-526
|
Percival, J.A., Skulski, T., Sanborn-Barrie, M., Stott, G.M., Leclair, A.D., Corkery, M.T., Boily, M., 2012. Geology and tectonic evolution of the Superior Province, Canada. In: Percival, J.A., Cook, F.A., Clowes, R.M. (eds). Tectonic Styles in Canada: The Lithoprobe Perspective. Geological Association of Canada, Special Paper 49, 321-378.
|
A. Petersson, A.I. Kemp, A.H. Hickman, M.J. Whitehouse, L. Martin, C.M. Gray. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chem. Geol., 511 (2019), pp. 51-70
|
W.C. Phinney. Petrogenesis of Archean anorthosites. D. Walker, I.S. McCallum (Eds.), Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions, Lunar and Planetary Institute, Houston, Texas (1982), pp. 121-124
|
W.C. Phinney. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: Implications for Archean and lunar anorthosites. Geochim. Cosmochim. Acta, 56 (1992), pp. 1885-1895
|
P. Piaia, E.P. Oliveira, C.M. Valeriano. The 2.58 Ga São José do Jacuipe gabbro-anorthosite stratiform complex, Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil: Root of the Neoarchaean Caraiba continental arc?. J. S. Am. Earth Sci., 79 (2017), pp. 326-341
|
C.M. Pieters, S. Besse, J. Boardman, B. Buratti, L. Cheek, R.N. Clark, J.P. Combe, D. Dhingra, J.N. Goswami, R.O. Green, J.W. Head. Mg-spinel lithology: A new rock type on the lunar farside. J. Geophys. Res. Planets, 116 (E6) (2011), p. E00G08, 10.1029/2010JE003727
|
C.M. Pieters, K.D. Hanna, L. Cheek, D. Dhingra, T. Prissel, C. Jackson, D. Moriarty, S. Parman, L.A. Taylor. The distribution of Mg-spinel across the Moon and constraints on crustal origin. Am. Mineral., 99 (10) (2014), pp. 1893-1910
|
A. Polat, P.W. Appel, B. Fryer, B. Windley, R. Frei, I.M. Samson, H. Huang. Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin. Precambr. Res., 175 (1–4) (2009), pp. 87-115
|
A. Polat, R. Frei, A. Scherstén, P.W.U. Appel. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex. SW Greenland. Chemical Geology, 277 (2010), pp. 1-20
|
A. Polat, B.J. Fryer, P.W. Appel, P. Kalvig, R. Kerrich, Y. Dilek, Z. Yang. Geochemistry of anorthositic differentiated sills in the Archean (∼2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos, 123 (1–4) (2011), pp. 50-72, 10.1016/j.lithos.2010.12.003
|
A. Polat, B.J. Fryer, I.M. Samson, C. Weisener, P.W.U. Appel, R. Frei, B.F. Windley. Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean. Precambr. Res., 214–215 (2012), pp. 124-153
|
A. Polat, L. Wang, P.W.U. Appel. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics, 662 (2015), pp. 67-94
|
A. Polat, R. Frei, H. Deng, X.-M. Yang, P. Sotiriou. Anatomy of a Neoarchean continental arc-backarc system in the Cross Lake-Pipestone Lake region, northwestern Superior Province. Canada. Precambrian Research, 370 (2022), Article 106556, 10.1016/j.precamres.2021.106556
|
M. Prinz, E. Dowty, K. Keil, T.E. Bunch. Mineralogy, petrology and chemistry of lithic fragments from Luna 20 fines: origin of the cumulate ANT suite and its relationship to high-alumina and mare basalts. Geochim. Cosmochim. Acta, 37 (1973), pp. 979-1006
|
Prissel, T.C., Parman, S.W., Jackson, C.R.M., Dhingra, D., Ganskow, G., Cheek, L.C., Rutherford, M.J., Hess, P., Pieters, C.M., 2012, March. Melt-wallrock reactions on the Moon: Experimental constraints on the formation of newly discovered Mg-spinel anorthosites. In: 43rd Annual Lunar and Planetary Science Conference, No. 1659, p. 2743.
|
T.C. Prissel, S.W. Parman, C.R.M. Jackson, M.J. Rutherford, P.C. Hess, J.W. Head, L. Cheek, D. Dhingra, C.M. Pieters. Pink Moon: The petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth Planet. Sci. Lett., 403 (2014), pp. 144-156
|
R. Ram Mohan, M. Satyanarayanan, M. Santosh, P.J. Sylvester, M. Tubrett, R. Lam. Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondw. Res., 23 (2) (2013), pp. 539-557
|
S. Ramadurai, M. Sankaran, T.A. Selvan, B.F. Windley. The stratigraphy and structure of the Sittampundi Complex, Tamil Nadu, India. Journal of Geological Society of India, 16 (4) (1975), pp. 409-414
|
M.V.M.S. Rao, Y.V. Ramana, B.S. Gogte. Dependence of compressional velocity on the mineral chemistry of eclogites. Earth Planet. Sci. Lett., 23 (1) (1974), pp. 15-20
|
Prissel, T.C., Parman, S.W., Head, J.W., Jackson, C.R.M., Rutherford, M.J., Hess, P.C., Cheek, L., Dhingra, D., Pieters, C.M., 2013. An“ uncollected” member of the Mg-suite: Mg-Al pink spinel anorthosites and their place on the Moon. In: 44th Annual Lunar and Planetary Science Conference, No. 1719, p. 3066.
|
Rollinson, H., Reid, C., Windley, B., 2010. Chromitites from the Fiskenæsset anorthositic complex, West Greenland: Clues to late Archaean mantle processes. In: Kusky, T.M., Zhai, M.-G., Xiao, W. (eds.). The Evolving Continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications 338, 197-212.
|
H. Rollinson, V. Pease. Using Geochemical Date to Understand Geological Processes. Cambridge University Press, Cambridge (2021), p. 346
|
A. Roman, N. Arndt. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geochim. Cosmochim. Acta, 278 (2020), pp. 65-77, 10.1016/j.gca.2019.07.009
|
M.L. Rowe, A.I. Kemp. Spinel, olivine, and pyroxene chemistry of the Eoarchaean Manfred Complex (Yilgarn Craton), with implications for the tectonic setting of Archaean layered mafic intrusions and the stabilisation of continental nuclei. Lithos, 356 (2020), Article 105340, 10.1016/j.lithos.2019.105340
|
S.S. Russell, K.H. Joy, T.E. Jeffries, G.J. Consolmagno, A. Kearsley. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372 (2024) (2014), p. 20130241, 10.1098/rsta.2013.0241
|
Ryan, B., Martineau, Y., 2012. Revised and coloured edition of 1992 map showing the Geology of the Saglek Fiord - Hebron Fiord area, Labrador (NTS 14L/2,3,6,7). Scale: 1:100000. Government of Newfoundland and Labrador. Department of Natural Resources, Geological Survey, Map 2012-15, Open File 14L/0091. (Update of map originally released as Newfoundland Department of Mines and Energy, Geological Survey Branch, Map 92-18B and Geological Survey of Canada, Open File 2466).
|
Ryder, G., Norman, M.D., 1980. Catalog of Apollo 16 rocks (3 vol.). Curator’s Office pub. #52, JSC #16904.
|
K. Sajeev, B.F. Windley, J.A.D. Connolly, Y. Kon. Retrogressed eclogite (20 kbar, 1020 C), from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambr. Res., 171 (1–4) (2009), pp. 23-36
|
M. Santosh, S.-S. Li. Anorthosites from an Archean continental arc in the Dharwar Craton, southern India: Implications for terrane assembly and cratonization. Precambr. Res., 308 (2018), pp. 126-147
|
C.K. Shearer, J.J. Papike. Magmatic evolution of the Moon. Am. Mineral., 84 (1999), pp. 1469-1494
|
J.W. Sheraton, L.A. Offe, R.J. Tingey, D.J. Ellis. Enderby land, Antarctica – an usual Precambrian high-grade metamorphic terrain. J. Geol. Soc. Aust., 27 (1–2) (1980), pp. 1-18
|
J.W. Shervais, L.A. Taylor. Petrologic constraints on the origin of the Moon. W.K. Hartmann, R.J. Phillips, G.J. Taylor (Eds.), Origin of the Moon, Lunar and Planetary Institute, Houston, USA (1986), pp. 173-201
|
C.K. Sio, L.E. Borg, W.S. Cassata. The timing of lunar solidification and mantle overturn recorded in ferroan anorthosite 62237. Earth and Planetary Science Letter, 538 (2020), Article 116219, 10.1016/j.epsl.2020.116219
|
J.V. Smith. Lunar mineralogy: a heavenly detective story, Presidential address, Part I. Am. Mineral., 59 (1974), pp. 231-243
|
Smith, J.V., Anderson, A.T., Newton, R.C., Olsen, E.J., Wyllie, P.J., Crewe, A.V., Isaacson, M.S., Johnson, D., 1970. Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In: Proceedings of the Apollo 11 Lunar Science Conference. Geochimica et Cosmochimica Acta Supplement 1, 897-925.
|
J.V. Smith, I.M. Steele. Lunar mineralogy: a heavenly detective story, Part II. Am. Mineral., 61 (1976), pp. 1059-1116
|
A.K. Sokol, V.A. Fernandes, T. Schulz, A. Bischoff, R. Burgess, R.N. Clayton, C. Münker, K. Nishiizumi, H. Palme, L. Schultz, G. Weckwerth. Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: New constraints on early lunar evolution. Geochim. Cosmochim. Acta, 72 (19) (2008), pp. 4845-4873
|
P. Sotiriou, A. Polat. Petrogenesis of anorthosites throughout Earth history. Precambr. Res., 384 (2023), Article 106936
|
P. Sotiriou, A. Polat, R. Frei, X.M. Yang, J. van Vessem. Evidence for Neoarchean hydrous arc magmatism, the anorthosite-bearing Mayville Intrusion, western Superior Province. Canada. Lithos, 362–363 (2020), Article 105482, 10.1016/j.lithos.2020.105482
|
P. Sotiriou, A. Polat. Comparisons between Tethyan anorthosite-bearing ophiolites and Archean anorthosite-bearing layered intrusions: Implications for Archean geodynamic processes. Tectonics, e2020TC006096 (2020), 10.1029/2020TC006096
|
P. Sotiriou, A. Polat, B.F. Windley, T. Kusky. Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambr. Res., 368 (2022), Article 106487
|
P. Sotiriou, A. Polat, B. Windley, T. Kusky. Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth. Earth-Sciences Reviews, 236 (2023), Article 104274, 10.1016/j.earscirev.2022.104274
|
P. Sotiriou, A. Polat, T. Kusky, B.F. Windley, R. Frei, X.-M. Yang. Geochemistry of Archean anorthosite-bearing layered intrusions. Earth Sci. Rev., 249 (2024), Article 104654, 10.1016/j.earscirev.2023.104654
|
A.K. Souders, P.J. Sylvester, J.S. Myers. Mantle and crustal sources of Archean anorthosite: a combined in situ isotopic study of Pb-Pb in plagioclase and Lu-Hf in zircon. Contrib. Miner. Petrol., 165 (2013), pp. 1-24
|
A.P. Subramaniam. Mineralogy and petrology of the Sittampundi complex, Salem district, Madras State, India. Geol. Soc. Am. Bull., 67 (1956), pp. 317-389
|
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ., 42 (1) (1989), pp. 313-345
|
Taylor, L.A., Pieters, C.M., 2013. Pink-spinel anorthosite formation: Considerations for a feasible petrogenesis. In: 44th Annual Lunar and Planetary Science Conference, No. 1719, p. 2785.
|
S.R. Taylor, S.M. McLennan. . The Continental Crust: Its Composition and Evolution, Blackwell, Oxford (1985), p. 312 pp
|
V. Tenczer, C.A. Hauzenberger, H. Fritz, M.J. Whitehouse, A. Mogessie, E. Wallbrecher, S. Muhongo, G. Hoinkes. Anorthosites in the Eastern Granulites of Tanzania—new SIMS zircon U-Pb age data, petrography and geochemistry. Precambr. Res., 148 (1–2) (2006), pp. 85-114
|
N. Thébaud, P.F. Rey. Archean gravity-driven tectonics on hot and flooded continents: Controls on long-lived mineralised hydrothermal systems away from continental margins. Precambr. Res., 229 (2013), pp. 93-104
|
D. Walker, J. Longhi, J.F. Hays. Differentiation of a very thick magma body and implications for the source regions of mare basalts. Geochimica et Cosmochimica Acta (Supplement, 6 (1975), pp. 1103-1120
|
Walker, D., 1983. Lunar and terrestrial crustal formation. In: Proceedings of the 14th Lunar and Planetary Science Conference, Part 1. Journal of Geophysical Research 88 (Supplement), B17-B25.
|
P.H. Warren. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci., 13 (1985), pp. 201-240
|
P.H. Warren. Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis: Importance of FeO enrichment in the parent magma. Am. Mineral., 75 (1990), pp. 46-58
|
P.H. Warren, G.J. Taylor, K. Keil, C. Marshall, J.T. Wasson. Foraging westward for pristine nonmare rocks: complications for petrogenetic models. Planetary Science Conference. Geochimica et Cosmochimica Acta Supplement, 16, Proceedings of the 12th Lunar and Planetary Science Conference (1981), pp. 21-40
|
P.H. Warren, H. Haack, K.L. Rasmussen. Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. J. Geophys. Res., 96 (1991), pp. 5909-5923
|
G.W. Wetherill. Possible slow accretion of the Moon and its thermal and petrological consequences. Conference on the Origins of Mare Basalts and Their Implications for Lunar Evolution, Lunar and Planetary Institute, Houston (1975), pp. 184-188
|
H.R. Williams. The Archaean Kasila Group of western Sierra Leone: geology and relations with adjacent granite-greenstone terrane. Precambr. Res., 38 (3) (1988), pp. 201-213
|
H.R. Williams. Geology and mineral chemistry of the Bantoro Leucogabbro, Kasila group, western Sierra Leone. J. Afr. Earth Sc., 9 (2) (1989), pp. 259-271
|
B.F. Windley. Anorthosites in the early crust of the Earth and on the Moon. Nature, 226 (1970), pp. 333-335
|
B.F. Windley. The Evolving Continents. (3rd Ed.), Wiley, Chichester, U.K. (1995), p. 526
|
B.G. Windley, F.C. Bishop, J.V. Smith. Metamorphosed layered igneous complexes in Archean granulite-gneiss belts. Annual Reviews of Earth Planetary Sciences, 9 (1981), pp. 175-198
|
Windley, B.F., Herd, R.K., Bowden, A.A. 1973. The Fiskenæsset Complex, West Greenland. Pt. 1: A preliminary study of the stratigraphy, petrology and whole-rock chemistry from Qeqertarssuatsiaq. Bulletin Geological Survey of Greenland, 106, 80 pp.
|
Windley, B.F, Bishop, F.C., Smith, J.V., Newton, R.C., Delaney, J.S., McCormick, G.R. 1979. Anorthositic complexes in the early crust of the earth: comparison of mineralogy with lunar anorthosites. 10th Annual Lunar and Planetary Science Conference, Houston, Texas, 1356-1358.
|
B.F. Windley, A.A. Garde. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth Sci. Rev., 93 (1–2) (2009), pp. 1-30
|
B.F. Windley, T. Kusky, A. Polat. Onset of plate tectonics by the Eoarchean. Precambr. Res., 352 (2021), Article 105980, 10.1016/j.precamres.2020.105980
|
B.F. Windley, J.V. Smith. Archaean high grade complexes and modern continental margins. Nature, 260 (1976), pp. 671-675
|
J.A. Wood. Lunar petrogenesis in a well-stirred magma ocean. Geochimica et Cosmochimica Acta (Supplement 6), 6, Proceedings of the 6th Lunar and Planetary Science Conference (1975), pp. 1087-1102
|
T. Wu, A. Polat, R. Frei, B.J. Fryer, K.-G. Yang, T. Kusky. Geochemistry, Nd, Pb and Sr isotope systematics, and U-Pb zircon ages of the Neoarchean Bad Vermilion Lake greenstone belt and spatially associated granitic rocks, western Superior Province, Canada. Precambr. Res., 282 (2016), pp. 21-51
|
A. Yamaguchi, Y. Karouji, H. Takeda, L. Nyquist, D. Bogard, M. Ebihara, C.Y. Shih, Y. Reese, D. Garrison, J. Park, G. McKay. The variety of lithologies in the Yamato-86032 lunar meteorite: Implications for formation processes of the lunar crust. Geochim. Cosmochim. Acta, 74 (15) (2010), pp. 4507-4530
|
X.M. Yang, M.G. Houlé. . Geology of the Cat Creek-Euclid Lake Area, Bird River Greenstone Belt, Southeastern Manitoba (parts of NTS 52L11, 12). Manitoba Agriculture and Resource Development, Manitoba Geological Survey, Geoscientific Report GR2020-1 (plus 1 Colour Map at, 1:20 000) (2020), p. 105 pp
|
A. Zeh, A. Gerdes, J. Barton Jr., R. Klemd. U-Th-Pb and Lu-Hf systematics of zircon from TTG’s, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambr. Res., 179 (1–4) (2010), pp. 50-68
|
Y.-F. Zheng. Subduction zone geochemistry. Geosci. Front., 10 (2019), pp. 1223-1254
|
Y.T. Zhong, T.M. Kusky, L. Wang, A. Polat, Y.Y. Peng, Z.K. Luan, X.Y. Liu, C.H. Wang, J.P. Wang. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nat. Commun., 12 (2021), p. 6172, 10.1038/s41467-021-26474-7
|
S. Zhou, A. Polat, F.J. Longstaffe, K. Yang, B.J. Fryer, C. Weisener. Formation of the Neoarchean Bad Vermilion Lake Anorthosite Complex and spatially associated granitic rocks at a convergent plate margin, Superior Province, Western Ontario, Canada. Gondw. Res., 33 (2016), pp. 134-159
|
/
〈 |
|
〉 |