Deep recycling of volatile elements in the mantle: Evidence from the heterogeneous B isotope in intra-plate basalts

Yan-Qing Li, Hiroshi Kitagawa, Chang-Qian Ma, Eizo Nakamura, Chie Sakaguchi, Katsura Kobayashi, Xiang-Yun Hu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101900.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101900. DOI: 10.1016/j.gsf.2024.101900

Deep recycling of volatile elements in the mantle: Evidence from the heterogeneous B isotope in intra-plate basalts

Author information +
History +

Abstract

Volatiles in the mantle are crucial for Earth’s geodynamic and geochemical evolution. Understanding the deep recycling of volatiles is key for grasping mantle chemical heterogeneity, plate tectonics, and long-term planetary evolution. While subduction transfers abundant volatile elements from the Earth’s surface into the mantle, the fate of hydrous portions within subducted slabs during intensive dehydration processes remains uncertain. Boron isotopes, only efficiently fractionating near the Earth’s surface, are valuable for tracing volatile recycling signals. In this study, we document a notably large variation in δ11B values (−14.3‰ to +8.2‰) in Cenozoic basalts from the South China Block. These basalts, associated with a high-velocity zone beneath East China, are suggested to originate from the mantle transition zone. While the majority exhibit δ11B values (−10‰ to −5‰) resembling the normal mantle, their enriched Sr-Nd-Pb isotope compositions and fluid-mobile elements imply hydrous components in their source, including altered oceanic crust and sediments. The normal δ11B values are attributed to the dehydration processes. Remarkably high δ11B values in the basalts indicate the presence of subducted serpentinites in their mantle source. A small subset of samples with low δ11B values and radiogenic isotope enrichments suggests a contribution from recycled detrital sediments, though retaining minimal volatile elements after extensive dehydration. These findings provide compelling evidence that serpentinites within subducted slabs predominantly maintain their hydrous nature during dehydration processes in subduction zones. They may transport a considerable amount of water into deep mantle reservoirs, such as the mantle transition zone.

Keywords

Intra-plate basalts / Boron isotopes / Serpentinite / Volatile recycling / Mantle heterogeneity

Cite this article

Download citation ▾
Yan-Qing Li, Hiroshi Kitagawa, Chang-Qian Ma, Eizo Nakamura, Chie Sakaguchi, Katsura Kobayashi, Xiang-Yun Hu. Deep recycling of volatile elements in the mantle: Evidence from the heterogeneous B isotope in intra-plate basalts. Geoscience Frontiers, 2024, 15(6): 101900 https://doi.org/10.1016/j.gsf.2024.101900

References

M.G. Babechuk, M. Widdowson, B.S. Kamber. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363 (2014), pp. 56-75
G.E. Bebout, E. Nakamura. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology, 31 (5) (2003), pp. 407-410
G.E. Bebout, P. Agard, K. Kobayashi, T. Moriguti, E. Nakamura. Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: evidence from western alps HP/UHP suites. Chem. Geol., 342 (2013), pp. 1-20
D.V. Bekaert, S.J. Turner, M.W. Broadley, J.D. Barnes, S.A. Halldórsson, J. Labidi, J. Wade, K.J. Walowski, P.H. Barry. Subduction–driven volatile recycling: a global mass balance. Annu. Rev. Earth Planet. Sci., 49 (2020), p. 2021
L.D. Benton, J.G. Ryan, F. Tera. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana Forearc. Earth Planet. Sci. Lett., 187 (2001), pp. 273-282
C. Boschi, A. Dini, G.L. Früh-Green, D.S. Kelley. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif: insights from B and Sr isotope data. Geochim. Cosmochim. Acta, 72 (2008), pp. 1801-1823
C. Boschi, E. Bonatti, M. Ligi, D. Brunelli, A. Cipriani, L. Dallai, M. D’Orazio, G.L. Früh-Green, S. Tonarini, J.D. Barnes, R.M. Bedini. Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11°N. Lithos, 178 (2013), pp. 3-23
M. Brounce, M.D. Feineman, P. LaFemina, A.A. Gurenko. Insights into crustal assimilation by Icelandic basalts from boron isotopes in melt inclusions from the 1783–1784 Lakaggar eruption. Geochim. Cosmochim. Acta, 94 (2012), pp. 164-180
E. Cannaò. Boron isotope fractionation in subducted serpentinites: a modelling attempt. Lithos, 376 (2020), Article 105768
S. Chakraborty, D.B. Dingwell, M. Chaussidon. Chemical diffusivity of boron in melts of haplogranitic composition. Geochim. Cosmochim. Acta, 57 (1993), pp. 1741-1751
M. Chaussidon, A. Jambon. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett., 121 (1994), pp. 277-291
Q. Chen, M.F. Zhou, X.P. Xi, P.P. Liu. Li and O isotopes of mantle xenoliths from deep fault–related Cenozoic basalts in eastern China: the role of subducted components in the generation of the heterogeneous lithospheric mantle. Chem. Geol., 628 (2023), Article 121471
C.J. De Hoog, I.P. Savov. Boron isotopes as a tracer of subduction zone processes. H.R. Marschall, G.L. Foster (Eds.), Boron Isotopes: The Fifth Element, Springer Nature, Cham, Switzerland (2018), pp. 217-247
F. Deschamps, S. Guillot, M. Godard, M. Andreani, K. Hattori. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23 (3) (2011), pp. 171-178
J.E. Dixon, L. Leist, C.H. Langmuir, J.G. Schilling. Recycled dehydrated lithosphere observed in plume-influence mid-ocean ridge basalts. Nature, 420 (2002), pp. 385-389
J.E. Dixon, I.N. Bindeman, R.H. Kingsley, K.K. Simons, P.J. Le Roux, T.R. Hajewski, P. Swart, C.H. Langmuir, J.G. Ryan, K.J. Walowski, I. Wada, P.J. Wallace. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. Geochem. Geophys. Geosyst., 18 (11) (2017), pp. 3801-3839
G.L. Foster, P.A.E. Pogge von Strandmann, J.W.B. Rae. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst., 11 (2010), Article Q08015
F.S. Genske, S.P. Turner, C. Beier, M.F. Chu, S. Tonarini, N.J. Pearson, K.M. Haase. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chem. Geol., 373 (2014), pp. 27-36
S.R. Hart, J. Blusztajn, H.J.B. Dick, P.S. Meyer, K. Muehlenbachs. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim. Cosmochim. Acta, 63 (1999), pp. 4059-4080
M.E. Hartley, J.C. De Hoog, O. Shorttle. Boron isotopic signatures of melt inclusions from North Iceland reveal recycled material in the Icelandic mantle source. Geochim. Cosmochim. Acta, 294 (2021), pp. 273-294
J. Hermann, C.J. Spandler. Sediment melts at sub-arc depths: an experimental study. J. Petrol., 49 (4) (2008), pp. 717-740
R.L. Hervig, G.M. Moore, L.B. Williams, S.M. Peacock, J.R. Holloway, K. Roggensack. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am. Mineral., 87 (2002), pp. 769-774
K.S. Ho, J.C. Chen, W.S. Juang. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China. J. Asian Earth Sci., 18 (2000), pp. 307-324
K.S. Ho, J.C. Chen, C.H. Lo, H.L. Zhao. 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chem. Geol., 197 (2003), pp. 287-318
X.L. Huang, Y. Niu, Y.G. Xu, J.L. Ma, H.N. Qiu, J.W. Zhong. Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contrib. Mineral. Petrol., 165 (2013), pp. 437-455
J.L. Huang, D.P. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth, 111 (2006), Article B09305
T. Ishikawa, E. Nakamura. Boron isotope geochemistry of the oceanic crust from DSDP/ODP Hole 504B. Geochim. Cosmochim. Acta, 56 (1992), pp. 1633-1639
T. Ishikawa, E. Nakamura. Boron isotope systematics of marine sediments. Earth Planet. Sci. Lett., 117 (1993), pp. 567-580
M.C. Johnson, T. Plank. Dehydration and melting experiments constraint the fate of subducted sediments. Geochem. Geophys. Geosyst., 1 (12) (1999),
CrossRef Google scholar
A. Kelbert, A. Schultz, G. Egbert. Global electromagnetic induction constraints on transition–zone water content variations. Nature, 460 (2009), pp. 1003-1006
K. Kobayashi, R. Tanaka, T. Moriguti, K. Shimizu, E. Nakamura. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem. Geol., 212 (1–2) (2004), pp. 143-161
T. Kogiso, Y. Tatsumi, S. Nakano. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet. Sci. Lett., 148 (1997), pp. 193-205
M. Konrad-Schmolke, R. Halama. Combined thermodynamic-geochemical modeling in metamorphic geology: boron as tracer of fluid-rock interaction. Lithos, 208–209 (2014), pp. 393-414
P. Kowalski, B. Wunder. Boron isotope fractionation among vapor-liquids-solids-melts: experiments and atomistic modeling. H.R. Marschall, G.L. Foster (Eds.), Boron Isotopes: the Fifth Element, Springer Nature, Cham, Switzerland (2018), pp. 33-69
T. Kuritani, E. Nakamura. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem. Geol., 186 (1–2) (2002), pp. 31-43
T. Kuritani, E. Nakamura. Highly precise and accurate isotopic analysis of small amounts of Pb using 205Pb-204Pb and 207Pb-204Pb, two double spikes. J. Anal. Atomic Spectrom., 18 (2003), pp. 1464-1470
T. Kuritani, E. Ohtani, J.I. Kimura. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat. Geosc., 4 (2011), pp. 713-716
T. Kuritani, K. Shimizu, T. Ushikubo, Q.K. Xia, J. Liu, M. Nakagawa, H. Taniuchi, E. Sato, N. Doi. Tracing the subducting Pacific slab to the mantle transition zone with hydrogen isotopes. Sci. Rep., 11 (1) (2021), p. 18755
. . R.W. Le Maitre, A. Streckeisen, B. Zanettin, M.J. Le Bas, B. Bonin, P. Bateman (Eds.), Igneous Rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, Cambridge (2005), p. 36
Y.Q. Li, H. Kitagawa, E. Nakamura, C.Q. Ma, X.Y. Hu, K. Kobayashi, C. Sakaguchi. Various ages of recycled material in the source of Cenozoic basalts in SE China: implications for the role of the Hainan plume. J. Petrol., 61 (6) (2020), Article egaa060,
CrossRef Google scholar
H.Y. Li, J. Li, J.G. Ryan, X. Li, Y.G. Xu. Molybdenum and boron isotope evidence for fluid–fluxed melting of intraplate upper mantle beneath the eastern North China Craton. Earth Planet. Sci. Lett., 520 (2019), pp. 105-114
Y.Q. Li, C.Q. Ma, P.T. Robinson, Z.Q. Liu. Recycling of oceanic crust from a stagnant slab in the mantle transition zone: evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 230 (2015), pp. 146-165
Y. Liu, A. Tossell. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim. Cosmochim. Acta, 69 (2005), pp. 3995-4006
X. Liu, D. Zhao, S. Li, W. Wei. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet. Sci. Lett., 464 (2017), pp. 166-174
X. Long, F. Guo, L. Zhao, Q. Zhang, Y. Wu. H-O-B isotopic constraints on fluid origin of serpentinization of the Hegenshan Ophiolite, Inner Mongolia. Geotectonica et Metallogenia, 41 (03) (2017), pp. 590-603
Y. Lu, A. Makishima, E. Nakamura. Coprecipitation of Ti, Mo, Sn and Sb with fluorides and application to determination of B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by ICPMS. Chem. Geol., 236 (2007), pp. 13-26
H.R. Mao, C.Q. Liu, Z.Q. Zhao. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes. Earth-Sci. Rev., 190 (2019), pp. 439-459
H.R. Marschall. Boron isotopes in the ocean floor realm and the mantle. Boron Isotopes, Springer, Cham (2018), pp. 189-215
H.R. Marschall, R. Altherr, L. Rüpke. Squeezing out the slab-Modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem. Geol., 239 (3–4) (2007), pp. 323-335
H.R. Marschall, S.Y. Jiang. Tourmaline isotopes: no element left behind. Elements, 7 (2011), pp. 313-319
H.R. Marschall, T. Ludwig, R. Altherr, A. Kalt, A.S. Tonarini. Syros metasomatic tourmaline: evidence for very high-δ11B fluids in subduction zones. J. Petrol., 47 (10) (2006), pp. 1915-1942
H.R. Marschall, V.D. Wanless, N. Shimizu, P.A.E. Pogge von Strandmann, T. Elliott, B.D. Monteleone. The boron and lithium isotopic composition of Mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta, 207 (2017), pp. 102-138
E.W. Marshall, E. Ranta, S.A. Halldórsson, A. Caracciolo, E. Bali, H. Jeon, M.J. Whitehouse, J.D. Barnes, A. Stefánsson. Boron isotope evidence for devolatilized and rehydrated recycled materials in the Icelandic mantle source. Earth Planet. Sci. Lett., 577 (2022), Article 117229
C. Martin, K.E. Flores, A. Vitale-Brovarone, S. Angiboust, G.E. Harlow. Deep mantle serpentinization in subduction zones: Insight from in situ B isotopes in slab and mantle wedge serpentinites. Chem. Geol., 545 (2020), Article 119637
G.A. McDonald, T. Katsura. Chemical composition of Hawaiian Lavas. J. Petrol., 5 (1964), pp. 82-133
A. Michel, B. Villemant. Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostand. Newslett., 27 (2) (2003), pp. 163-171
T. Moriguti, T. Shibata, E. Nakamura. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab–derived fluid composition. Chem. Geol., 212 (1–2) (2004), pp. 81-100
E. Nakamura, I. McDougall, I.H. Campbell. K-Ar ages of basalts from the Higashi-Matsuura district, northwestern Kyushu, Japan and regional geochronology of the Cenozoic alkaline volcanic rocks in eastern Asia. Geochem. J., 20 (1986), pp. 91-99
E. Nakamura, T. Ishikawa, J.L. Birck, C.J. Allègre. Precise boron isotopic analysis of natural rock samples using a boron–mannitol complex. Chem. Geol.: Isotope Geosci., 94 (3) (1992), pp. 193-204
E. Nakamura, K. Kobayashi, R. Tanaka, T. Kunihiro, H. Kitagawa, C. Potiszil, et al.. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proceed. Jpn. Acad. B, 98 (6) (2022), pp. 227-282
H.W. Nesbitt, G.M. Young. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (1982), pp. 715-717
H. Ni, Y.F. Zheng, Z. Mao, Q. Wang, R.X. Chen, L. Zhang. Distribution, cycling and impact of water in the Earth's interior. Nat. Sci. Rev., 4 (6) (2017), pp. 879-891
S. Pabst, T. Zack, I.P. Savov, T. Ludwig, D. Rost, E.P. Vicenzi. Evidence for boron incorporation into the serpentine crystal structure. Am. Mineral., 96 (7) (2011), pp. 1112-1119
M.R. Palmer, A.J. Spivack, J.M. Edmond. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim. Cosmochim. Acta, 51 (1987), pp. 2319-2323
S.M. Peacock, K. Wang. Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science, 286 (1999), pp. 937-939
B. Peng, D. Wu, J. Lai, H. Xiao, P. Li. Simultaneous determination of halogens (F, Cl, Br and I) in coal using pyrohydrolysis combined with ion chromatography. Fuel, 94 (2012), pp. 629-631
T. Plank. The chemical composition of subducting sediments. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (second ed), Elsevier, Oxford (2014), pp. 607-629
M.E. Regier, K.V. Smit, T.B. Chalk, T. Stachel, R.A. Stern, E.M.G.L. Smith, Y. Bussweiler, C. DeBuhr, A.D. Burnham, J.W. Harris, D.G. Pearson. Boron isotopes in blue diamond record seawater–derived fluids in the lower mantle. Earth Planet. Sci. Lett., 602 (2023), Article 117923
E.F. Rose, M. Chaussidon, C. France-Lanord. Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim. Cosmochim. Acta, 64 (2000), pp. 397-408
E.F. Rose-Koga, O. Sigmarsson. B-O-Th isotope systematics in Icelandic tephra. Chem. Geol., 255 (3–4) (2008), pp. 454-462
Rudnick, R., Gao, S., 2014. Composition of the Continental Crust. doi:10.1016/B978–0–08–095975–7.00301–6ù.
L.H. Rüpke, J.P. Morgan, M. Hort, J.A. Connolly. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett., 223 (1–2) (2004), pp. 17-34
Ryan, J.G., Chauvel, C., 2014. 3.13 The subduction-zone filter and the impact of recycled materials on the evolution of the mantle. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (second ed). Elsevier. pp. 479–508.
T. Sakuyama, W. Tian, J.I. Kimura, Y. Fukao, Y. Hirahara, T. Takahashi, R. Senda, Q. Chang, T. Miyazak, M. Obayashi, H. Kawabata, Y. Tatsumi. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: constraints from Cenozoic alkaline basalts in eastern China. Chem. Geol., 359 (2013), pp. 32-48
V.J. Salters, A. Stracke. Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5 (5) (2004),
CrossRef Google scholar
I.P. Savov, J.G. Ryan, M. D'Antonio, P. Fryer. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana forearc. J. Geophys. Res. Solid Earth, 112 (B9) (2007),
CrossRef Google scholar
W.E. Seyfried Jr, J.S. Seewald, M.E. Berndt. Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: geochemical controls in the aftermath of June 1999 seismic events. J. Geophys. Res. Solid Earth, 108 (B9) (2003),
CrossRef Google scholar
K.K. Simons, G.E. Harlow, H.K. Brueckner, S.L. Goldstein, S.S. Sorensen, N.G. Hemming, C.H. Langmuir. Lithium isotopes in Guatemalan and Franciscan HP-LT rocks: insights into the role of sediment-derived fluids during subduction. Geochim. Cosmochim. Acta, 74 (12) (2010), pp. 3621-3641
E.M. Smith, S.B. Shirey, S.H. Richardson, F. Nestola, E.S. Bullock, J. Wang, W. Wang. Blue boron-bearing diamonds from Earth’s lower mantle. Nature, 560 (7716) (2018), pp. 84-87
H.J. Smith, A.J. Spivack, H. Staudigel, S.R. Hart. The boron isotopic composition of altered oceanic crust. Chem. Geol., 126 (1995), pp. 119-135
A.V. Sobolev, E.V. Asafov, A.A. Gurenko, N.T. Arndt, V.G. Batanova, M.V. Portnyagin, D. Garbe-Schönberg, A. Wilson, G.R. Byerly. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago. Nature, 571 (7766) (2019), pp. 555-559
A. Spivack, J. Edmond. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal. Chem., 58 (1986), pp. 31-35
H. Staudigel, G.R. Davies, S.R. Hart, K.M. Marchant, B.M. Smith. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth Planet. Sci. Lett., 130 (1995), pp. 169-185
A. Strack, M. Willig, F. Genske, P. Béguelin, E. Todd. Chemical geodynamics insights from a machine learning approach. Geochem. Geophys. Geosyst., 23 (10) (2022), Article e2022GC010606,
CrossRef Google scholar
A. Stracke, M. Bizimis, V.J.M. Salters. Recycling oceanic crust: quantitative constraints. Geochem. Geophys. Geosyst., 4 (3) (2003),
CrossRef Google scholar
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geological Society, 42, Special Publications, London (1989), pp. 313-345
P. Sun, Y. Niu, P. Guo, L. Ye, J. Liu, Y. Feng. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: insights into their mantle sources and melting processes. Lithos, 272 (2017), pp. 16-30
R. Tanaka, E. Nakamura. Boron isotopic constraints on the source of Hawaiian shield lavas. Geochim. Cosmochim. Acta, 69 (13) (2005), pp. 3385-3399
A.R. Thomson, M.J. Walter, S.C. Kohn, R.A. Brooker. Slab melting as a barrier to deep carbon subduction. Nature, 529 (7584) (2016), pp. 76-79
S. Tonarini, W.P. Leeman, P.T. Leat. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth Planet. Sci. Lett., 301 (2011), pp. 275-284
R.B. Trumbull, J.F. Slack. Boron isotopes in the continental crust: granites, pegmatites, felsic volcanic rocks, and related ore deposits. H. Marschall, G. Foster (Eds.), Boron Isotopes. Advances in Isotope Geochemistry, Springer, Cham (2018), pp. 249-272,
CrossRef Google scholar
S. Turner, S. Tonarini, I. Bindeman, W.P. Leeman, B.F. Schaefer. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature, 447 (7145) (2007), pp. 702-705
F. Vils, S. Tonarini, A. Kalt, H.M. Seitz. Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet. Sci. Lett., 286 (3–4) (2009), pp. 414-425
K.J. Walowski, P.J. Wallace, M.A. Clynne, D.J. Rasmussen, D. Weis. Slab melting and magma formation beneath the southern Cascade arc. Earth Planet. Sci. Lett., 446 (2016), pp. 100-112
K.J. Walowski, L.A. Kirstein, J.C.M. De Hoog, T.R. Elliott, I.P. Savov, R.E. Jones. Investigating ocean island mantle source heterogeneity with boron isotopes in melt inclusions. Earth Planet. Sci. Lett., 508 (2019), pp. 97-108
K.J. Walowski, L.A. Kirstein, J.C.M. De Hoog, T. Elliott, R.E. Jones. Boron recycling in the mantle: evidence from a global comparison of ocean island basalts. Geochim. Cosmochim. Acta, 302 (2021), pp. 83-100
X.J. Wang, L.H. Chen, A.W. Hofmann, F.G. Mao, J.Q. Liu, Y. Zhong. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet. Sci. Lett., 465 (2017), pp. 16-28
X.C. Wang, S.A. Wilde, Q.L. Li, Y.N. Yang. Continental flood basalts derived from the hydrous mantle transition zone. Nat. Commun., 6 (1) (2015), p. 7700
W.M. White. Probing the earth's deep interior through geochemistry. Geochem. Perspect. Let., 4 (2) (2015), pp. 95-251
Y. Wu, F. Guo, X.C. Wang, S.A. Wilde, W. Fan. Derivation of Jurassic HIMU-like intraplate basalts from mantle transition zone in South China: new geochemical constraints from olivine-hosted melt inclusion. Lithos, 354 (2020), Article 105337
W.L. Xu, J.H. Chen, A.H. Weng, J. Tang, F. Wang, C.G. Wang, P. Guo, Y.N. Wang, H. Yang, A.A. Sorokin. Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in northeast Asia. Geology, 49 (1) (2021), pp. 19-24
Y. Xu, H. Li, L. Hong, L. Ma, Q. Ma, M. Sun. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci. China: Earth Sci., 61 (2018), pp. 869-886
Y.G. Xu, H.H. Zhang, H.N. Qiu, W.C. Ge, F.Y. Wu. Oceanic crust components in continental basalts from Shuangliao, Northeast China: derived from the mantle transition zone?. Chem. Geol., 328 (2012), pp. 168-184
Z. Xu, Y.F. Zheng, Z.F. Zhao. The origin of Cenozoic continental basalts in east–central China: constrained by linking Pb isotopes to other geochemical variables. Lithos, 268 (2017), pp. 302-319
J. Yang, M. Faccenda. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579 (2020), pp. 88-91
S.Y. Yang, S.Y. Jiang. Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic-intrusive complex, southeast China: evidence for boron mobilization and in filtration during magmatic-hydrothermal processes. Chem. Geol., 312–313 (2012), pp. 177-189
K.D. Zhao, S.Y. Jiang, E. Nakamura, T. Moriguti, M.R. Palmer, S.Y. Yang, B.Z. Dai, Y.H. Jiang. Fluid-rock interaction in the Qitianling granite and associated tin deposits, South China: evidence from boron and oxygen isotopes. Ore Geol. Rev., 43 (2011), pp. 243-248
G.C. Zhao, Y.J. Wang, B.C. Huang, Y.P. Dong, S.Z. Li, G.W. Zhang, S. Yu. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth Sci. Rev., 186 (2018), pp. 262-286
Y.F. Zheng. Subduction zone geochemistry. Geosci. Front., 10 (4) (2009), pp. 1223-1254
A. Zindler, S. Hart. Chemical geodynamics. Annu. Rev. Earth Pl. Sc., 14 (1986), pp. 493-571
H. Zou, A. Zindler, X. Xu, Q. Qi. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem. Geol., 171 (2000), pp. 33-47

Accesses

Citations

Detail

Sections
Recommended

/