Multi-isotope and geochemical approach to the magma source and tectonic setting of Proterozoic anorthosite massifs and Anorthosite-Mangerite-Charnockite-Granite (AMCG) suites

L.A. Elizondo-Pacheco, L.A. Solari, R. González-Guzmán, H.L. He, E. Becerra-Torres, J.A. Ramírez-Fernández, R. Maldonado

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101880.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101880. DOI: 10.1016/j.gsf.2024.101880

Multi-isotope and geochemical approach to the magma source and tectonic setting of Proterozoic anorthosite massifs and Anorthosite-Mangerite-Charnockite-Granite (AMCG) suites

Author information +
History +

Abstract

The occurrence of massif-type anorthosite intrusions is a widespread Proterozoic phenomenon. They are usually associated with gabbroic, charnockitic, and granitic rocks, comprising the so-called anorthosite-mangerite-charnockite-granite (AMCG) suite. Although these rocks have been extensively studied worldwide, several aspects concerning their formation remain unsettled. Among them, the magma source and the tectonic setting are the most important. To evaluate these issues, we first compiled geochemical and isotopic data of Proterozoic anorthosite massifs and AMCG suites worldwide and stored it in a database named datAMCG. This plethora of data allows us to make some important interpretations. We argue that the wide-ranging multi-isotopic composition of this group of rocks reflects varying proportions of juvenile mantle-derived melts and crustal components. We interpret that the precursor magmas of most massive anorthosite bodies and associated mafic rocks have a mantle-dominated origin. However, we highlight that a crustal component is indispensable to generate these lithologies. Adding variable amounts of this material during succeeding multi-stage assimilation-fractional crystallization (AFC) processes gives these intrusions their typical mantle-crustal hybrid isotopic traits. In contrast, a crustal-dominant origin with a complementary mantle component is interpreted for most MCG rocks. In summary, the isotopic information in datAMCG indicates that both sources are necessary to generate AMCG rocks. Therefore, we suggest that hybridized magmas with different mantle-crust proportions originate these rocks. This interpretation might offer a more nuanced and accurate depiction of this phenomenon in future work instead of choosing a single-sourced model as in the past decades. Finally, tectonomagmatic diagrams suggest that the rocks under study were likely generated in a tectonic environment that transitioned between collision and post-collisional extension, sometimes involving subduction-modified mantle sources. This interpretation is supported by geological and geochronological information from most complexes, thus challenging the Andean-type margins as an ideal tectonic setting.

Keywords

Massif-type anorthosite / Anorthosite-granite suite / Magmatic sources / Hybridized magmas / Tectonic setting / Post-orogenic extension

Cite this article

Download citation ▾
L.A. Elizondo-Pacheco, L.A. Solari, R. González-Guzmán, H.L. He, E. Becerra-Torres, J.A. Ramírez-Fernández, R. Maldonado. Multi-isotope and geochemical approach to the magma source and tectonic setting of Proterozoic anorthosite massifs and Anorthosite-Mangerite-Charnockite-Granite (AMCG) suites. Geoscience Frontiers, 2024, 15(6): 101880 https://doi.org/10.1016/j.gsf.2024.101880

References

S. Agrawal, M. Guevara, S.P. Verma. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. Int. Geol. Rev., 50 (12) (2008), pp. 1057-1079,
CrossRef Google scholar
K.I. Åhäll, J.N. Connelly, T.S. Brewer. Episodic rapakivi magmatism due to distal orogenesis?: Correlation of 1.69 - 1.50 Ga orogenic and inboard, “anorogenic” events in the Baltic Shield. Geology, 28 (9) (2000), pp. 823-826,
CrossRef Google scholar
R. Alviola, B.S. Johanson, O.T. Rämö, M. Vaasjoki. The Proterozoic Ahvenisto rapakivi granite-massif-type anorthosite complex, southeastern Finland; petrography and U-Pb chronology. Precambrian Res., 95 (1999), pp. 89-107,
CrossRef Google scholar
Y.V. Amelin, A.M. Larin, R.D. Tucker. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contrib. Mineral. Petrol., 127 (1997), pp. 353-368,
CrossRef Google scholar
Y. Amelin, C. Li, O. Valeyev, A.J. Naldrett. Nd-Pb-Sr Isotope systematics of crustal assimilation in the Voisey’s Bay and Mushuau Intrusions, Labrador. Canada. Econ. Geol., 95 (2000), pp. 815-830,
CrossRef Google scholar
T. Andersen. Radiogenic isotope systematics of the Herefoss granite, South Norway: an indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic Shield. Chem. Geol., 135 (1997), pp. 139-158,
CrossRef Google scholar
T. Andersen, A. Andersen, A.G. Sylvester. Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: Evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. J. Geol. Soc. London, 158 (2001), pp. 253-267,
CrossRef Google scholar
I.C. Anderson, C.D. Frost, B.R. Frost. Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambr. Res., 124 (2003), pp. 243-267,
CrossRef Google scholar
U.B. Andersson, L.A. Neymark, K. Billström. Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: Implications from U-Pb zircon ages, Nd, Sr and Pb isotopes. Trans. R. Soc. Edinb. Earth Sci., 92 (3) (2001), pp. 201-228,
CrossRef Google scholar
N.T. Arndt, S.L. Goldstein. Use and abuse of crust-formation ages. Geology, 15 (1987), p. 893,
CrossRef Google scholar
L.D. Ashwal. The Temporality of anorhtosites. Can. Mineral., 48 (2010), pp. 711-728,
CrossRef Google scholar
L.D. Ashwal, G.M. Bybee. Crustal evolution and the temporality of anorthosites. Earth Sci. Rev., 173 (2017), pp. 307-330,
CrossRef Google scholar
L.D. Ashwal, M.A. Hamilton, V.P.I. Morel, R.A. Rambeloson. Geology, petrology and isotope geochemistry of massif-type anorthosites from southwest Madagascar. Contrib. Mineral. Petrol., 133 (1998), pp. 389-401,
CrossRef Google scholar
L.D. Ashwal, D. Twist. The Kunene complex, Angola/Namibia: A composite massif-type anorthosite complex. Geol. Mag., 131 (5) (1994), pp. 579-591,
CrossRef Google scholar
L.D. Ashwal, J.L. Wooden. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the Proterozoic mantle. Nature, 306 (1983), pp. 679-680,
CrossRef Google scholar
L.D. Ashwal, J.L. Wooden, R.F. Emslie. Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: Implications for crustal contamination and basement mapping. Geochim. Cosmochim. Acta, 50 (1986), pp. 2571-2585,
CrossRef Google scholar
Ashwal, L.D., 1993. Proterozoic Massif-Type Anorthosites. In: Ashwal, L.D. (Ed.), Anorthosites. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 82–218. https://doi.org/10.1007/978-3-642-77440-9_3.
J. Barling, D. Weis, D. Demaiffe. A Sr-, Nd- and Pb-isotopic investigation of the transition between two megacyclic units of the Bjerkreim-Sokndal layered intrusion, south Norway. Chem. Geol., 165 (2000), pp. 47-65,
CrossRef Google scholar
A.R. Basu, H.S. Pettingill. Origin and age of Adirondack anorthosites re-evaluated with Nd isotopes. Geology, 11 (1983), p. 514,
CrossRef Google scholar
R.A. Batchelor, P. Bowden. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 48 (1–4) (1985), pp. 43-55,
CrossRef Google scholar
J.H. Bédard. Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib. Mineral. Petrol., 141 (2001), pp. 747-771,
CrossRef Google scholar
E.A. Belousova, Y.A. Kostitsyn, W.L. Griffin, G.C. Begg, S.Y. O’Reilly, N.J. Pearson. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119 (2010), pp. 457-466,
CrossRef Google scholar
M.E. Bickford, J.M. McLelland, P.A. Mueller, G.D. Kamenov, M. Neadle. Hafnium isotopic compositions of zircon from Adirondack AMCG suites: Implications for the petrogenesis of anorthosites, gabbros, and granitic members of the suites. Can. Mineral., 48 (2010), pp. 751-761,
CrossRef Google scholar
B. Bingen, G. Viola, C. Möller, J. Vander Auwera, A. Laurent, K. Yi. The Sveconorwegian orogeny. Gondwana Res., 90 (2021), pp. 273-313,
CrossRef Google scholar
O. Bolle, D. Demaiffe, J.C. Duchesne. Petrogenesis of jotunitic and acidic members of an AMC suite (Rogaland anorthosite province, SW Norway): a Sr and Nd isotopic assessment. Precambrian Res., 124 (2003), pp. 185-214,
CrossRef Google scholar
O. Bolle, J.C. Duchesne. The Apophysis of the Bjerkreim-Sokndal layered intrusion (Rogaland anorthosite province, SW Norway): A composite pluton build up by tectonically-driven emplacement of magmas along the margin of an AMC igneous complex. Lithos, 98 (1–4) (2007), pp. 292-312,
CrossRef Google scholar
I.V. Buchko, E.B. Sal’nikova, A.B. Kotov, A.P. Sorokin, A.M. Larin, S.D. Velikoslavinskii, S.Z. Yakovleva, YuV. Plotkina. Age and tectonic position of the Khorogochi gabbro-anorthosite massif (Dzhugdzhur-Stanovoi superterrane). Dokl. Earth Sci., 423 (2008), pp. 1312-1315,
CrossRef Google scholar
G.M. Bybee, L.D. Ashwal. Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: Insights from Proterozoic anorthosites. Geochim. Cosmochim. Acta, 167 (2015), pp. 286-300,
CrossRef Google scholar
G.M. Bybee, L.D. Ashwal, S.B. Shirey, M. Horan, T. Mock, T.B. Andersen. Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho. Earth Planet. Sci. Lett., 389 (2014), pp. 74-85,
CrossRef Google scholar
G.M. Bybee, L.D. Ashwal, C.F. Gower, M.A. Hamilton. Pegmatitic pods in the Mealy Mountains Intrusive Suite, Canada: Clues to the origin of the olivine–orthopyroxene dichotomy in Proterozoic anorthosites. J. Petrol., 56 (2015), pp. 845-868,
CrossRef Google scholar
G.M. Bybee, B. Hayes, T.M. Owen-Smith, J. Lehmann, L.D. Ashwal, A.M. Brower, C.M. Hill, F. Corfu, M. Manga. Proterozoic massif-type anorthosites as the archetypes of long-lived (≥100 Myr) magmatic systems—New evidence from the Kunene Anorthosite Complex (Angola). Precambrian Res., 332 (2019), Article 105393,
CrossRef Google scholar
R. Chakrabarti, A.R. Basu, P.K. Bandyopadhyay, H. Zou. Age and origin of the Chilka Anorthosites, Eastern Ghats, India: Implications for massif anorthosite petrogenesis and break-up of Rodinia. Ray, J., Sen, G., Ghosh, B. (Eds.), Topics in Igneous Petrology, Springer, Netherlands, Dordrecht (2011), pp. 355-382.,
CrossRef Google scholar
B. Charlier, J.-C. Duchesne, J. Vander Auwera. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem. Geol., 234 (2006), pp. 264-290,
CrossRef Google scholar
C. Chauvel, J. Blichert-Toft. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett., 190 (3–4) (2001), pp. 137-151,
CrossRef Google scholar
F. Chemale, R.P. Philipp, I.A. Dussin, M.L.L. Formoso, K. Kawashita, A.L. Berttotti. Lu–Hf and U-Pb age determination of Capivarita Anorthosite in the Dom Feliciano Belt, Brazil. Precambrian Res., 186 (2011), pp. 117-126,
CrossRef Google scholar
W.T. Chen, M.-F. Zhou, J.-F. Gao, T.-P. Zhao. Oscillatory Sr isotopic signature in plagioclase megacrysts from the Damiao anorthosite complex, North China: Implication for petrogenesis of massif-type anorthosite. Chem. Geol., 393–394 (2015), pp. 1-15,
CrossRef Google scholar
F. Corfu. U-Pb age, setting and tectonic significance of the anorthosite-mangerite-charnockite-granite suite, Lofoten-Vesteralen, Norway. J. Petrol., 45 (2004), pp. 1799-1819,
CrossRef Google scholar
D. Corrigan, S. Hanmer. Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere?. Geology, 25 (1997), pp. 61-64,
CrossRef Google scholar
C.H. Crocker, K.D. Collerson, J.F. Lewry, M.E. Bickford. Sm-Nd, U-Pb, and Rb-Sr geochronology and lithostructural relationships in the southwestern Rae province: constraints on crustal assembly in the western Canadian shield. Precambr. Res., 61 (1993), pp. 27-50,
CrossRef Google scholar
D. Demaiffe, M. Javoy. 18O/16O ratios of anorthosites and related rocks from the Rogaland Complex (SW Norway). Contrib. Mineral. Petrol., 72 (1980), pp. 311-317,
CrossRef Google scholar
D. Demaiffe, D. Weis, J. Michot, J.C. Duchesne. Isotopic constraints on the genesis of the Rogaland anorthositic suite (southwest Norway). Chem. Geol., 57 (1986), pp. 167-179,
CrossRef Google scholar
D.J. DePaolo. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature, 291 (1981), pp. 193-196,
CrossRef Google scholar
D.J. DePaolo. Neodymium Isotope Geology: an Introduction. Springer, New York (1988), p. 187
D.J. DePaolo, A.M. Linn, G. Schubert. The continental crustal age distribution: Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. J. Geophys. Res. Solid Earth, 96 (1991), pp. 2071-2088,
CrossRef Google scholar
D.J. DePaolo, G.J. Wasserburg. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophys. Res. Lett., 4 (10) (1977), pp. 465-468,
CrossRef Google scholar
C.V. Dharma Rao, M. Santosh, S.-H. Zhang. Neoproterozoic massif-type anorthosites and related magmatic suites from the Eastern Ghats Belt, India: Implications for slab window magmatism at the terminal stage of collisional orogeny. Precambrian Res., 240 (2014), pp. 60-78,
CrossRef Google scholar
L. Díaz-González. TecMagDiSys: A new computer program for multidimensional tectonomagmatic discrimination. J.S. Armstrong-Altrin, K. Pandarinath, S.K. Verma (Eds.), Geochemical Treasures and Petrogenetic Processes, Springer (2022), pp. 455-484.
F.S. Diener, R.A. Fuck, N.F. Botelho, H.J.D.O. Polo, M.M. Pimentel, T.B. Duarte, G.V. Martineli, J.A. Brod. Petrogenesis of the Córrego das Campinas Gabbro-Anorthosite Suite: Characterization of a Neoproterozoic massif-type anorthosite in the Goiás Magmatic Arc and its significance in the evolution of the Brasília belt, Brazil. J. South Am. Earth Sci., 122 (2023), Article 104144,
CrossRef Google scholar
C. Dobmeier. Emplacement of Proterozoic massif-type anorthosite during regional shortening: Evidence from the Bolangir anorthosite complex (Eastern Ghats Province, India). Int. J. Earth Sci., 95 (2006), pp. 543-555,
CrossRef Google scholar
K. Drüppel. Petrogenesis of the Mesoproterozoic anorthosite, syenite and carbonatite suites of NW Namibia and their contribution to the metasomatic formation of the Swartbooisdrif sodalite deposits. PhD thesis. Universität Würzburg (2003), p. 345
K. Drüppel, S. Littmann, R.L. Romer, M. Okrusch. Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Precambr. Res., 156 (2007), pp. 1-31,
CrossRef Google scholar
J.C. Duchesne, H. Martin, B. Baginski, J. Wiszniewska, J. Vander Auwera. The origin of ferroan-potassic A-type granitoids: The case of the hornblende-biotite granite suite of the Mesoproterozoic Mazury Complex, northeastern Poland. Can. Mineral., 48 (2010), pp. 947-968,
CrossRef Google scholar
R.F. Dymek. Anorthosite magma revisited: field and petrographic evidence from the CRUML Belt, Grenville Province, Quebec. AGU Spring Meeting Abstracts. (2004)
G.N. Eby. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20 (7) (1992), pp. 641-644,
CrossRef Google scholar
R.F. Emslie. Pyroxene megacrysts from anorthositic rocks; new clues to the sources and evolution of the parent magmas. Can. Mineral., 13 (1975), pp. 138-145
R.F. Emslie. Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of north America. Precambr. Res., 7 (1978), pp. 61-98,
CrossRef Google scholar
R.F. Emslie. Proterozoic Anorthosite Massifs. A.C. Tobi, J.L.R. Touret (Eds.), The Deep Proterozoic Crust in the North Atlantic Provinces, Springer, Netherlands, Dordrecht (1985), pp. 39-60
R.F. Emslie, E. Hegner. Reconnaissance isotopic geochemistry of anorthosite mangerite-charnockite-granite (AMCG) complexes, Grenville Province, Canada. Chem. Geol., 106 (1993), pp. 279-298,
CrossRef Google scholar
R.F. Emslie, P.A. Hunt. Ages and petrogenetic significance of igneous Mangerite-Charnockite Suites associated with massif anorthosites, Grenville Province. J. Geol., 98 (1990), pp. 213-231,
CrossRef Google scholar
R.F. Emslie, M.A. Hamilton, R.J. Theriault. Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite- granite (AMCG) complex: isotopic and chemical evidence from the Nain Plutonic Suite. J. Geol., 102 (1994), pp. 539-558,
CrossRef Google scholar
R.J. Evans, L.D. Ashwal, M.A. Hamilton. Mafic, ultramafic, and anorthositic rocks of the Tete Complex, Mozambique; petrology, age, and significance. S. Afr. J. Geol., 102 (1999), pp. 153-166
C.M. Fedo, H. Wayne Nesbitt, G.M. Young. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23 (10) (1995), pp. 921-924,
CrossRef Google scholar
A. Fourny, D. Weis, J.S. Scoates. Isotopic and trace element geochemistry of the Kiglapait Intrusion, Labrador: Deciphering the mantle source, crustal contributions and processes preserved in mafic layered intrusions. J. Petrol., 60 (2019), pp. 553-590,
CrossRef Google scholar
L.M.B. Fraga, R. Dall’Agnol, J.B.S. Costa, M.J.B. Macambira. The Mesoproterozoic Mucajaí anorthosite-mangerite-rapakivi granite complex, Amazonian craton, Brazil. Can. Mineral., 47 (2009), pp. 1469-1492,
CrossRef Google scholar
D. Francis, P. Scowen, G. Panneton, R. Doig. Contrasting Si-saturation in troctolite-anorthosite intrusions along the Manicouagan corridor of the Abitibi-Grenville transect. Can. J. Earth Sci., 37 (2000), pp. 271-289,
CrossRef Google scholar
R. Fred, J.S. Heinonen, A. Heinonen, W.A. Bohrson. Thermodynamic constraints on the petrogenesis of massif-type anorthosites and their parental magmas. Lithos, 422–423 (2022), Article 106751,
CrossRef Google scholar
Frost, C.D., Frost, B.R., 2023. Petrologic constraints on the origin of Proterozoic ferroan granites of the Laurentian margin. In: Whitmeyer, S.J., Williams, M.L., Kellett, D.A., Tikoff, B. (Eds.), Laurentia: Turning Points in the Evolution of a Continent. Geological Society of America, pp. 151–173. doi: https://doi.org/10.1130/2022.1220(10).
C.D. Frost, K.R. Chamberlain, B.R. Frost, J.S. Scoates. The 1.76-Ga Horse Creek anorthosite complex, Wyoming: A massif anorthosite emplaced late in the Medicine Bow orogeny. Rocky Mt. Geol., 35 (2000), pp. 71-90,
CrossRef Google scholar
C.D. Frost, B.R. Frost, J.M. Bell, K.R. Chamberlain. The relationship between A-type granites and residual magmas from anorthosite: evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precambrian Res., 119 (2002), pp. 45-71,
CrossRef Google scholar
B.R. Frost, C.D. Frost. A geochemical classification for feldspathic igneous rocks. J. Petrol., 49 (11) (2008), pp. 1955-1969,
CrossRef Google scholar
C.D. Frost, B.R. Frost, D.H. Lindsley, K.R. Chamberlain, S.M. Swapp, J.S. Scoates. Geochemical and isotopic evolution of the anorthositic plutons of the Laramie anorthosite complex: explanations for variations in silica activity and oxygen fugacity of massif anorthosites. Can. Mineral., 48 (2010), pp. 925-946,
CrossRef Google scholar
G.J. Geringer, A.E. Schoch, M. Sukhanov, D. Zhuravlev. Geochemical and isotopic characteristics of different types of anorthosite in the Namaqua mobile belt, South Africa. Chem. Geol., 145 (1998), pp. 17-46,
CrossRef Google scholar
P. Gleißner, K. Drüppel, H. Taubald. Magmatic evolution of anorthosites of the Kunene Intrusive Complex, NW Namibia: Evidence from oxygen isotope data and trace element zoning. J. Petrol., 51 (2010), pp. 897-919,
CrossRef Google scholar
P. Gleißner, K. Drüppel, R.L. Romer. The role of crustal contamination in massif-type anorthosites, new evidence from Sr–Nd–Pb isotopic composition of the Kunene Intrusive Complex, NW Namibia. Precambri. Res., 185 (2011), pp. 18-36,
CrossRef Google scholar
P. Gleißner, K. Drüppel, H. Becker. Osmium isotopes and highly siderophile element fractionation in the massif-type anorthosites of the Mesoproterozoic Kunene Intrusive Complex, NW Namibia. Chem. Geol., 302–303 (2012), pp. 33-47,
CrossRef Google scholar
R. González-Guzmán, L.A. Elizondo-Pacheco, A. González-Roque, C.E. Sánchez-Torres, K.S. Cárdenas-Muñoz. shinyNORRRM: A cross-platform software to calculate the CIPW Norm. Math Geosci., 55 (2023), pp. 563-577,
CrossRef Google scholar
C.F. Gower, T.E. Krogh. A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Can. J. Earth Sci., 39 (5) (2002), pp. 795-829,
CrossRef Google scholar
C.F. Gower, R.D. Tucker. Distribution of pre-1400 Ma crust in the Grenville Province: implications for rifting in Laurentia-Baltica during geon 14. Geology, 22 (9) (1994), pp. 827-830,
CrossRef Google scholar
T.H. Green. High-pressure experimental studies on the origin of anorthosite. Can. J. Earth Sci, 6 (3) (1969), pp. 427-440,
CrossRef Google scholar
W.L. Griffin, N.J. Pearson, E. Belousova, S.E. Jackson, E. van Achterbergh, S.Y. O’Reilly, S.R. Shee. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64 (2000), pp. 133-147,
CrossRef Google scholar
P. Groulier, A. Indares, G. Dunning, A. Moukhsil. Andean style 1.50–1.35 Ga arc dynamics in the Southeastern Laurentian margin: The rifting and reassembly of Quebecia. Terra Nova, 32 (2020), pp. 450-457,
CrossRef Google scholar
I. Haapala, O.T. Rämö. Rapakivi granites and related rocks: an introduction. Precambr. Res., 95 (1999), pp. 1-7,
CrossRef Google scholar
J.L. Hannah, H.J. Stein. Re-Os model for the origin of sulfide deposits in anorthosite-associated intrusive complexes. Econ. Geol., 97 (2002), pp. 371-383,
CrossRef Google scholar
D. Hasterok, J.A. Halpin, A.S. Collins, M. Hand, C. Kreemer, M.G. Gard, S. Glorie. New maps of global geological provinces and tectonic plates. Earth Sci. Rev., 231 (2022), Article 104069,
CrossRef Google scholar
H.L. He, X.-Y. Song, M.-G. Zhai, S.-Y. Yu, Z.-S. Du. Lower crustal contribution to the magma formation of the Damiao massif-type anorthosite, North China Craton: Evidence from zircon Hf-O isotopes. Precambr. Res., 332 (2019), Article 105396,
CrossRef Google scholar
H.L. He, M.-G. Zhai, J.-S. Lu, Y. Zhao, C.-L. Zhang, P.M. George, K. Sajeev, P. Rajkumar, L.-L. Gou, W.-H. Ao, Y.-H. Hu. Lower crust-mantle interactions in the massif-type anorthosite formation: New evidence from zircon U-Pb-Hf-O isotopes of the Neoproterozoic Kadavur Complex, southern India. Lithos, 380–381 (2021), Article 105836,
CrossRef Google scholar
C. Hébert, A.-M. Cadieux, O. van Breemen. Temporal evolution and nature of Ti–Fe–P mineralization in the anorthosite–mangerite–charnockite–granite (AMCG) suites of the south-central Grenville Province, Saguenay – Lac St. Jean area, Quebec, Canada. Can. J. Earth Sci., 42 (2005), pp. 1865-1880,
CrossRef Google scholar
E. Hegner, R.F. Emslie, L.M. Iaccheri, M.A. Hamilton. Sources of the Mealy Mountains and Atikonak River anorthosite-granitoid complexes, Grenville Province, Canada. Can. Mineral., 48 (2010), pp. 787-808,
CrossRef Google scholar
A. Heinonen, T. Andersen, O.T. Rämö, M. Whitehouse. The source of Proterozoic anorthosite and rapakivi granite magmatism: evidence from combined in situ Hf–O isotopes of zircon in the Ahvenisto complex, southeastern Finland. J. Geol. Soc. London, 172 (2015), pp. 103-112,
CrossRef Google scholar
A.P. Heinonen, L.M. Fraga, O.T. Rämö, R. Dall’Agnol, I. Mänttäri, T. Andersen. Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton — Geochemical, U-Pb geochronological, and Nd–Hf–O isotopic constraints. Lithos, 151 (2012), pp. 17-34,
CrossRef Google scholar
C.J. Hughes. Spilites, keratophyres, and the igneous spectrum. Geol. Mag., 109 (6) (1972), pp. 513-527,
CrossRef Google scholar
J. Jacobs, C.M. Fanning, F. Henjes-Kunst, M. Olesch, H. Paech. Continuation of the Mozambique Belt Into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in Central Dronning Maud Land. J. Geol., 106 (1998), pp. 385-406,
CrossRef Google scholar
R.I. Kalamarides. Kiglapait geochemistry VI: Oxygen isotopes. Geochim. Cosmochim. Acta, 48 (1984), pp. 1827-1836,
CrossRef Google scholar
Korja, A., Lahtinen, R., Nironen, M., 2006. The Svecofennian orogen: A collage of microcontinents and island arcs. In: Gee, D.G., Stephenson, R.A. (Eds.), Eurpean Lithosphere Dynamics. Geological Society London Memoir 32. https://doi.org/10.1144/GSL.MEM.2006.032.01.34.
I.K. Kozakov, I.V. Anisimova, E.B. Salnikova, A.M. Larin, V.P. Kovach, Y.V. Plotkina, A.M. Fedoseenko. Olonkhuduk anorthosite pluton of the Baidaric Terrane of the Central Asian Orogenic Belt: Geological position and Age. Petrology, 28 (2020), pp. 141-150,
CrossRef Google scholar
N.M. Kudryashov, A.V. Mokrushin. Mesoarchean gabbroanorthosite magmatism of the Kola region: Petrochemical, geochronological, and isotope-geochemical data. Petrology, 19 (2011), pp. 167-182,
CrossRef Google scholar
S.T. Kwon, J.G. Jeong. Preliminary Sr-Nd isotope study of the Hadong-Sanchung anorthositic rocks in Korea : Implication for their origin and for the Precambrian tectonics. J. Geol. Soc. Korea, 26 (1990), pp. 341-349
D.D. Lambert, J.G. Foster, L.R. Frick, C. Li, A.J. Naldrett. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic ore system, Labrador, Canada. Lithos, 47 (1–2) (1999), pp. 69-88,
CrossRef Google scholar
D.D. Lambert, L.R. Frick, J.G. Foster, C. Li, A.J. Naldrett. Re-Os isotope systematics of the Voisey’s Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Econ. Geol., 95 (2000), pp. 867-888,
CrossRef Google scholar
A.M. Larin, V.A. Glebovitskii, R.S. Krymskii, M.K. Sukhanov, I.N. Dagelaiskaya. Neodymium and strontium isotope constraints on genesis of the Geran anorthosite massif. Dokl. Earth Sci., 382 (2002), pp. 101-105
A.M. Larin, A.B. Kotov, E.B. Sal’nikova, V.A. Glebovitskii, M.K. Sukhanov, S.Z. Yakovleva, V.P. Kovach, N.G. Berezhnaya, S.D. Velikoslavinskii, M.D. Tolkachev. The Kalar Compex, Aldan-Stanovoi shield, an ancient anorthosite-mangerite-charnockite-granite association: Geochronologic, geochemical, and isotopic-geochemical characteristics. Petrology, 14 (2006), pp. 2-20,
CrossRef Google scholar
Y. Lee, M. Cho, W. Cheong, K. Yi. A massif-type (∼1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: Late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova, 26 (5) (2014), pp. 408-416,
CrossRef Google scholar
Y. Lee, M. Cho, K. Yi. In situ U-Pb and Lu–Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite. J. Asian Earth Sci., 138 (2017), pp. 629-646,
CrossRef Google scholar
J. Lehmann, G.M. Bybee, B. Hayes, T.M. Owen-Smith, G. Belyanin. Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola. Int. J. Earth Sci., 109 (2020), pp. 1463-1485,
CrossRef Google scholar
L. Li, H. Li, J. Zi, B. Rasmussen, S. Sheppard, Y. Ma, J. Meng, Z. Song. The link between an anorthosite complex and underlying olivine–Ti-magnetite-rich layered intrusion in Damiao, China: insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites. Contrib. Mineral. Petrol., 174 (2019), p. 48,
CrossRef Google scholar
J.F. Liu, J.Y. Li, J.F. Qu, Z.C. Hu, Q.W. Feng, C.L. Guo. Late Paleoproterozoic tectonic setting of the northern margin of the North China Craton: Constraints from the geochronology and geochemistry of the mangerites in the Longhua and Jianping areas. Precambrian Res., 272 (2016), pp. 57-77,
CrossRef Google scholar
J. Longhi. A mantle or mafic crustal source for Proterozoic anorthosites?. Lithos, 83 (2005), pp. 183-198,
CrossRef Google scholar
J. Longhi, J.V. Auwera, M.S. Fram, J.-C. Duchesne. Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. J. Petrol., 40 (1999), pp. 339-362,
CrossRef Google scholar
G. Markl, A. Höhndorf. Isotopic constraints on the origin of AMCG-suite rocks on the Lofoten Islands, N Norway. Mineral. Petrol., 78 (2003), pp. 149-171,
CrossRef Google scholar
G. Markl, B. Ronald Frost, K. Bugher. The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: I. Field relations and estimation of intrinsic variables. J. Petrol., 39 (8) (1998), pp. 1425-1452,
CrossRef Google scholar
J. Martignole, N. Machado, S. Nantel. Timing of intrusion and deformation of the Riviere-Pentecote anorthosite (Grenville Province). J. Geol., 101 (1993), pp. 652-658,
CrossRef Google scholar
McLelland, J., Whitney, P., 1990. Anorogenic, bimodal emplacement of anorthositic, charnockitic, and related rocks in the Adirondack Mountains, New York. In: Stein, H.J., Hannah, J.L. (Eds.), Ore-Bearing Granite Systems, Petrogenesis and Mineralizing Processes. Geological Society of America, pp. 301-315. https://doi.org/10.1130/SPE246-p301.
J.M. McLelland, M.E. Bickford, B.M. Hill, C.C. Clechenko, J.W. Valley, M.A. Hamilton. Direct dating of Adirondack massif anorthosite by U-Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexes. Geol. Soc. Am. Bull., 116 (2004), pp. 1299-1317,
CrossRef Google scholar
J.M. McLelland, B.W. Selleck, M.A. Hamilton, M.E. Bickford. Late- to post-tectonic setting of some major Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) suites. Can. Mineral., 48 (2010), pp. 729-750,
CrossRef Google scholar
J.F. Menuge. The petrogenesis of massif anorthosites: a Nd and Sr isotopic investigation of the Proterozoic of Rogaland/Vest-Agder, SW Norway. Contrib. Mineral. Petrol., 98 (1988), pp. 363-373,
CrossRef Google scholar
L. Milani, J. Lehmann, G.M. Bybee, B. Hayes, T.M. Owen-Smith, L. Oosthuizen, P.W.J. Delport, H. Ueckermann. Geochemical and geochronological constraints on the Mesoproterozoic Red Granite Suite, Kunene AMCG Complex of Angola and Namibia. Precambrian Res., 379 (2022), Article 106821,
CrossRef Google scholar
B.V. Miller, S.M. Barr, F. Tesfai, C.E. White. Tonian Fe-Ti-P ferronorite and alkali anorthosite in the northern Appalachian orogen, southern New Brunswick, Canada: Amazonian basement in Ganderia?. Precambrian Res., 317 (2018), pp. 77-88,
CrossRef Google scholar
J.N. Mitchell. Petrology and geochemistry of dioritic and gabbroic rocks in the laramie anorthosite complex, Wyoming: implications for the evolution of Proterozoic anorthosite. PhD thesis. University of Wyoming (1993), p. 213 pp.
J.N. Mitchell, J.S. Scoates, C.D. Frost. High-Al gabbros in the Laramie Anorthosite Complex, Wyoming: implications for the composition of melts parental to Proterozoic anorthosite. Contrib. Mineral. Petrol., 119 (1995), pp. 166-180,
CrossRef Google scholar
J.W. Morgan, H.J. Stein, J.L. Hannah, R.J. Markey, J. Wiszniewska. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwałki Anorthosite Massif, northeast Poland. Miner. Depos., 35 (2000), pp. 391-401,
CrossRef Google scholar
C.-E. Morisset. Origin of rutile-bearing ilmenite Fe-Ti deposits in Proterozoic anorthosite massifs of the Grenville Province. PhD thesis. University of British Columbia (2008), p. 301 pp.
C.-E. Morisset, J.S. Scoates, D. Weis, R.M. Friedman. U-Pb and 40Ar/39Ar geochronology of the Saint-Urbain and Lac Allard (Havre-Saint-Pierre) anorthosites and their associated Fe–Ti oxide ores, Québec: Evidence for emplacement and slow cooling during the collisional Ottawan orogeny in the Grenville Province. Precambrian Res., 174 (2009), pp. 95-116,
CrossRef Google scholar
C.-E. Morisset, J.S. Scoates, D. Weis, M. Sauve, K.J. Stanaway. Rutile-bearing ilmenite deposits associated with the Proterozoic Saint-Urbain and Lac Allard anorthosite massifs, Grenville Province, Quebec. Can. Mineral., 48 (2010), pp. 821-849,
CrossRef Google scholar
J. Morrison, J.W. Valley. Contamination of the Marcy Anorthosite Massif, Adirondack Mountains, NY: petrologic and isotopic evidence. Contrib. Mineral. Petrol., 98 (1988), pp. 97-108,
CrossRef Google scholar
S.A. Morse. A partisan review of Proterozoic anorthosites. Am. Mineral., 67 (1982), pp. 1087-1100
S.A. Morse. Labrador massif anorthosites: Chasing the liquids and their sources. Lithos, 89 (2006), pp. 202-221,
CrossRef Google scholar
Morse, S.A., 2015. Kiglapait Intrusion, Labrador. In: Charlier, B., Namur, O., Latypov, R., Tegner, C. (Eds.), Layered Intrusions. Springer, pp. 589–648. https://doi.org/10.1007/978-94-017-9652-1_13.
J.S. Myers, R.J. Voordouw, T.A. Tettelaar. Proterozoic anorthosite-granite Nain batholith: Structure and intrusion processes in an active lithosphere-scale fault zone, northern Labrador. Can. J. Earth Sci., 45 (8) (2008), pp. 909-934,
CrossRef Google scholar
H.W. Nesbitt, G.M. Young. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (1982), pp. 715-717,
CrossRef Google scholar
L.A. Neymark, Yu.V. Amelin, A.M. Larin. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite-Anorthosite batholith (Karelia, Russia). Mineral. Petrol., 50 (1994), pp. 173-193,
CrossRef Google scholar
F.M. Nielsen, I.H. Campbell, M. McCulloch, J.R. Wilson. A strontium isotopic investigation of the Bjerkreim—Sokndal layered intrusions, Southwest Norway. J. Petrol., 37 (1996), pp. 171-193,
CrossRef Google scholar
M.W. Nyman, K.E. Karlstrom, E. Kirby, C.M. Graubard. Mesoproterozoic contractional orogeny in western North America: evidence from ca. 1.4 Ga plutons. Geology, 22 (10) (1994), pp. 901-904,
CrossRef Google scholar
Y.L. O’Connor, J. Morrison. Oxygen isotope constraints on the petrogenesis of the Sybille intrusion of the Proterozoic Laramie Anorthosite Complex. Contrib. Mineral. Petrol., 136 (1999), pp. 81-91,
CrossRef Google scholar
T. Ohta, H. Arai. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol., 240 (3–4) (2007), pp. 280-297,
CrossRef Google scholar
D.B. Othman, S. Fourcade, C.J. Allègre. Recycling processes in granite-granodiorite complex genesis: the Querigut case studied by Nd-Sr isotope systematics. Earth Planet. Sci. Lett., 69 (1984), pp. 290-300,
CrossRef Google scholar
B.E. Owens, R.F. Dymek. Petrogenesis of the Labrieville Alkalic Anorthosite Massif, Grenville Province. Quebec. J. Petrol., 42 (2001), pp. 1519-1546,
CrossRef Google scholar
B.E. Owens, R.F. Dymek. Comparative petrology of the montpelier and roseland potassic anorthosites, Virginia. Can. Mineral., 54 (2016), pp. 1563-1593,
CrossRef Google scholar
B.E. Owens, R.F. Dymek, R.D. Tucker, J.C. Brannon, F.A. Podosek. Age and radiogenic isotopic composition of a late- to post-tectonic anorthosite in the Grenville Province: the Labrieville massif, Quebec. Lithos, 31 (1994), pp. 189-206,
CrossRef Google scholar
A. Pandey, A. Dharwadkar, R. Ravindra, A. Milton. Petrogenesis of massif-type anorthosite complex, Gruber, Central Dronning Maud Land, East Antarctica: Implications for magma source and evolution. Chin. J. Geochem., 28 (2009), pp. 340-350,
CrossRef Google scholar
N.C. Pant, A. Kundu, M.J. D’Souza, A. Saikia. Petrology of the Neoproterozoic granulites from Central Dronning Maud Land, East Antarctica - Implications for southward extension of East African Orogen (EAO). Precambrian Res., 227 (2013), pp. 389-408,
CrossRef Google scholar
K.H. Park, D.-Y. Kim, S. Yong-Sun. Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. J. Petrol. Soc. Korea, 10 (2001), pp. 27-35
J. Pearce. Sources and settings of granitic rocks. Episodes, 19 (4) (1996), pp. 120-125, 10.18814/epiiugs/1996/v19i4/005
J.A. Pearce, N.B.W. Harris, A.G. Tindle. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25 (4) (1984), pp. 956-983,
CrossRef Google scholar
W.H. Peck, J.W. Valley. Large crustal input to high δ18O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec. Contrib. Mineral. Petrol., 139 (2000), pp. 402-417,
CrossRef Google scholar
W.H. Peck, C.C. Clechenko, M.A. Hamilton, J.W. Valley. Oxygen isotopes in the Grenville and Nain AMCG suites: Regional aspects of the crustal component in massif anorthosites. Can. Mineral., 48 (2010), pp. 763-786,
CrossRef Google scholar
F. Perri. Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview. Palaeogeogr. Palaeoclimatol. Palaeoecol., 556 (2020), Article 109873,
CrossRef Google scholar
O.T. Rämö, H. Huhma, J. Kirs. Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton. Precambrian Res., 79 (1996), pp. 209-226,
CrossRef Google scholar
Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust, in: Treatise on Geochemistry. Elsevier, pp. 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6.
V.J.M. Salters, S.R. Hart. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth Planet. Sci. Lett., 104 (1991), pp. 364-380,
CrossRef Google scholar
H. Schiellerup, D.D. Lambert, T. Prestvik, B. Robins, J.S. McBride, R.B. Larsen. Re–Os isotopic evidence for a lower crustal origin of massif-type anorthosites. Nature, 405 (2000), pp. 781-784,
CrossRef Google scholar
Scoates, J.S., Chamberlain, K.R., 1997. Orogenic to post-orogenic origin for the 1.76 Ga Horse Creek anorthosite complex, Wyoming, USA. J. Geol. 105(3), 331-343. https://doi.org/10.1086/515928.
J.S. Scoates, K.R. Chamberlain. Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming; petrologic consequences and U-Pb ages. Am. Mineral., 80 (1995), pp. 1317-1327,
CrossRef Google scholar
J.S. Scoates, C.D. Frost. A strontium and neodymium isotopic investigation of the Laramie anorthosites, Wyoming, USA: Implications for magma chamber processes and the evolution of magma conduits in Proterozoic anorthosites. Geochim. Cosmochim. Acta, 60 (1996), pp. 95-107,
CrossRef Google scholar
J.S. Scoates, C.D. Frost, J.N. Mitchell, D.H. Lindsley, B.R. Frost. Residual-liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: The Sybille intrusion, Laramie anorthosite complex, Wyoming. GSA Bulletin, 108 (1996), pp. 1357-1371,
CrossRef Google scholar
E.V. Sharkov. Middle-Proterozoic anorthosite-rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European Craton. Precambrian Res., 183 (4) (2010), pp. 689-700,
CrossRef Google scholar
L.V. Shumlyanskyy. Geochemistry of the Osnitsk-Mikashevichy volcanoplutonic complex of the Ukrainian shield. Geochem. Int., 52 (2014), pp. 912-924,
CrossRef Google scholar
L. Shumlyanskyy, R.M. Ellam, O. Mitrokhin. The origin of basic rocks of the Korosten AMCG complex, Ukrainian shield: Implication of Nd and Sr isotope data. Lithos, 90 (2006), pp. 214-222,
CrossRef Google scholar
L. Shumlyanskyy, K. Billström, C. Hawkesworth, S.Å. Elming. U-Pb age and Hf isotope compositions of zircons from the north-western region of the Ukrainian shield: Mantle melting in response to post-collision extension. Terra Nova, 24 (5) (2012), pp. 373-379,
CrossRef Google scholar
L. Shumlyanskyy, C. Hawkesworth, K. Billström, S. Bogdanova, O. Mytrokhyn, R. Romer, B. Dhuime, S. Claesson, R. Ernst, M. Whitehouse, O. Bilan. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Res., 292 (2017), pp. 216-239,
CrossRef Google scholar
G. Skridlaite, J. Wiszniewska, J.C. Duchesne. Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: West of the East European Craton. Precambrian Res., 124 (2–4) (2003), pp. 305-326,
CrossRef Google scholar
G. Skridlaite, M. Whitehouse, A. Rimša. Evidence for a pulse of 1.45 Ga anorthosite-mangerite-charnockite-granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton. Terra Nova, 19 (2007), pp. 294-301,
CrossRef Google scholar
T. Slagstad, N.M.W. Roberts, M. Marker, T.S. Røhr, H. Schiellerup. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova, 25 (1) (2013), pp. 30-37,
CrossRef Google scholar
P. Sotiriou, A. Polat. Petrogenesis of anorthosites throughout Earth history. Precambrian Res., 384 (2023), Article 106936,
CrossRef Google scholar
Swanson-Hysell, N.L., Rivers, T., van der Lee, S., 2023. The late Mesoproterozoic to early Neoproterozoic Grenvillian orogeny and the assembly of Rodinia: Turning point in the tectonic evolution of Laurentia. In: Whitmeyer, S.J., Williams, M.L., Kellett, D.A., Tikoff, B. (Eds.), Laurentia: Turning Points in the Evolution of a Continent. Memoir of the Geological Society of America. https://doi.org/10.1130/2022.1220(14).
H.P. Taylor. The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., 19 (1968), pp. 1-71,
CrossRef Google scholar
H.P. Taylor. Oxygen isotope studies of anorthosites, with particular reference to the origin of bodies in the Adirondack Mountains. New York State Museum and Sciencie Service - Memoir, New York (1969), p. 18
S.R. Taylor, I.H. Campbell, M.T. McCulloch, S.M. McLennan. A lower crustal origin for massif-type anorthosites. Nature, 311 (1984), pp. 372-374,
CrossRef Google scholar
X. Teng, M. Santosh. A long-lived magma chamber in the Paleoproterozoic North China Craton: Evidence from the Damiao gabbro-anorthosite suite. Precambrian Res., 256 (2015), pp. 79-101,
CrossRef Google scholar
S. Trépanier, L. Mathieu, R. Daigneault, S. Faure. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks. Comput. Geosci., 89 (2016), pp. 32-43,
CrossRef Google scholar
D.W. Valentino, J.R. Chiarenzelli, S.P. Regan. Spatial and temporal links between Shawinigan accretionary orogenesis and massif anorthosite intrusion, southern Grenville province, New York, U.S.A. J. Geodyn., 129 (2019), pp. 80-97,
CrossRef Google scholar
J.W. Valley. Oxygen isotopes in zircon. Rev. Mineral Geochem., 53 (1) (2003), pp. 343-385,
CrossRef Google scholar
J.W. Valley, P.D. Kinny, D.J. Schulze, M.J. Spicuzza. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol., 133 (1998), pp. 1-11,
CrossRef Google scholar
J. Vander Auwera, O. Bolle, B. Bingen, J.-P. Liégeois, M. Bogaerts, J.C. Duchesne, B. De Waele, J. Longhi. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci. Rev., 107 (2011), pp. 375-397,
CrossRef Google scholar
S.P. Verma. Comprehensive multidimensional tectonomagmatic discrimination from log-ratio transformed major and trace elements. Lithos, 362–363 (2020), Article 105476,
CrossRef Google scholar
S.P. Verma, S. Agrawal. New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana De Ciencias Geologicas, 28 (1) (2011), pp. 24-44
S.P. Verma, M. Guevara, S. Agrawal. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J. Earth Syst. Sci., 115 (2006), pp. 485-528,
CrossRef Google scholar
S.K. Verma, K. Pandarinath, S.P. Verma. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. Int. Geol. Rev., 54 (2012), pp. 325-347,
CrossRef Google scholar
S.P. Verma, S.K. Verma. First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes. Turk. J. Earth Sci., 22 (2013), pp. 931-995,
CrossRef Google scholar
S.P. Verma, K. Pandarinath, S.K. Verma, S. Agrawal. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos, 168–169 (2013), pp. 113-123,
CrossRef Google scholar
J.D. Vervoort, A.I.S. Kemp. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chem. Geol., 425 (2016), pp. 65-75,
CrossRef Google scholar
V.I. Vinogradov. Strontium isotope ratios and the origin of anorthosites. Int. Geol. Rev., 28 (1986), pp. 39-45,
CrossRef Google scholar
W. Wang, S. Liu, X. Bai, Q. Li, P. Yang, Y. Zhao, S. Zhang, R. Guo. Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 162–163 (2013), pp. 175-194,
CrossRef Google scholar
X. Wang, T. Wang, A. Castro, C. Ke, Y. Yang, N. Hu. Magmatic evolution and source of a Proterozoic rapakivi granite complex in the North China Craton: New evidence from zircon U−Pb ages, mineral compositions, and geochemistry. J. Asian Earth Sci., 167 (2018), pp. 165-180,
CrossRef Google scholar
B. Weber, E.E. Scherer, C. Schulze, V.A. Valencia, P. Montecinos, K. Mezger, J. Ruiz. U-Pb and Lu–Hf isotope systematics of lower crust from central-southern Mexico – Geodynamic significance of Oaxaquia in a Rodinia Realm. Precambrian Res., 182 (2010), pp. 149-162,
CrossRef Google scholar
J.B. Whalen, K.L. Currie, B.W. Chappell. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95 (1987), pp. 407-419,
CrossRef Google scholar
J.B. Whalen, R.S. Hildebrand. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348–349, 105179 (2019),
CrossRef Google scholar
R.A. Wiebe. Chapter 6 Proterozoic Anorthosite Complexes. K.C. Condie (Ed.), Developments in Precambrian Geology, Elsevier (1992), pp. 215-261
E. Wilmart, F. Pineau, A. Réjou-Michel, J.C. Duchesne. Fluid transfer in anorthosites and related rocks from Rogaland (Southwest Norway): Evidence from stable isotopes. Earth Planet. Sci. Lett., 125 (1994), pp. 55-70,
CrossRef Google scholar
J.R. Wilson, B. Robins, F.M. Nielsen, J.C. Duchesne, J. Vander Auwera. The Bjerkreim-Sokndal Layered Intrusion, Southwest Norway. R.G. Cawthorn (Ed.), Developments in Petrology, Elsevier (1996), pp. 231-255
J. Wiszniewska. Strontium isotope ratios and REE geochemistry in the Suwałki anorthosites, NE Poland. Geological Quarterly, 44 (2000), pp. 183-186
J. Wiszniewska, S. Claesson, H. Stein, J. Vander Auwera, J.C. Duchesne. The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14 (2002), pp. 451-460,
CrossRef Google scholar
J. Wiszniewska, E. Krzemińska. Advances in geochronology in the Suwałki anorthosite massif and subsequent granite veins, northeastern Poland. Precambrian Res., 361 (2021), Article 106265,
CrossRef Google scholar
J.L. Wooden, A.P. Barth, P.A. Mueller. Crustal growth and tectonic evolution of the Mojave crustal province: Insights from hafnium isotope systematics in zircons. Lithosphere, 5 (2013), pp. 17-28,
CrossRef Google scholar
G.H. Xie, J.W. Wang. A preliminary study on the emplacement age of the Damiao anorthosite complex. Geochimica, 17 (1988), pp. 13-17
Q.-Y. Yang, M. Santosh, H.M. Rajesh, T. Tsunogae. Late Paleoproterozoic charnockite suite within post-collisional setting from the North China Craton: Petrology, geochemistry, zircon U-Pb geochronology and Lu–Hf isotopes. Lithos, 208–209 (2014), pp. 34-52,
CrossRef Google scholar
Q. Yuan, C. Zhang, F. Cheng, X. Cao, E. Needham, H. Zheng, X. Lü. In-situ U-Pb dating of zircon coronas, Sr–Nd–Hf isotopes and petrological constraints of the Daxigou anorthosite complex, NW China. Gondwana Res., 105 (2022), pp. 96-116,
CrossRef Google scholar
S. Zhang, S. Liu, Y. Zhao, J. Yang, B. Song, X. Liu. The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res., 155 (2007), pp. 287-312,
CrossRef Google scholar
T.-P. Zhao, W. Chen, M.F. Zhou. Geochemical and Nd–Hf isotopic constraints on the origin of the ∼ 1.74-Ga Damiao anorthosite complex. North China Craton. Lithos, 113 (2009), pp. 673-690,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/