Geology and genesis of the Aqishan Pb-Zn deposit, NW China: Insights from mineralogy, geochemistry, and in situ U-Pb geochronology
Kang Wang, Yinhong Wang, Jun Deng, Jiajun Liu, Fangfang Zhang, Wei Zhang, Hui Zhang, Wenxin Gu, Hong Chen
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101877.
Geology and genesis of the Aqishan Pb-Zn deposit, NW China: Insights from mineralogy, geochemistry, and in situ U-Pb geochronology
The unique ore-forming processes and the key factors responsible for formation of skarn deposits are still obscure, and challenges exist in the determination of timing of Pb-Zn skarns owing to lacking suitable mineral chronometers. Here we present detailed paragenesis, bulk geochemistry, in situ U-Pb dating of zircon and garnet, and garnet oxygen isotopes together with in situ zircon Hf-O isotopes from the newly discovered Aqishan Pb-Zn deposit in the southern Central Asian Orogenic Belt (CAOB), northwest China. This comprehensive data set revealed a Late Carboniferous subduction-related distal Pb-Zn skarn system associated with the granitic magmatism. Pre-ore stage garnets are generally subhedral to euhedral with oscillatory zoning and show slightly fractionated rare earth element patterns with positive Eu anomalies that point to an infiltration metasomatism origin under high water/rock ratios. The syn-ore stage sphalerite is typically enriched in Mn and Cd and has moderate Zn/Cd ratios (337–482), with a formation temperature of 265 °C to 383 °C, which indicate magmatic-hydrothermal signatures. The isocons defined by P2O5 decipher that the principal factors for skarn formation were elevated activities of Fe, Ca, and Si species, where remobilization of Pb metals, meanwhile, contributed to ore-forming budgets to mineralizing fluids. SIMS U-Pb dating of zircons from granite porphyry that occurs distal to the skarns and Pb-Zn orebodies shows that these intrusions emplaced at ca. 311.3–310.6 Ma, recording the subduction of the Paleo-Tianshan oceanic plate. Hydrothermal garnets in close textural association with Pb-Zn sulfides yield indistinguishable in situ LA-ICP-MS U-Pb ages of 310.5 ± 4.1 Ma. Whole-rock geochemistry and in situ zircon Hf-O isotopes (δ18O = 4.6‰–6.0‰) indicate that the granite porphyry was derived from partial melting of juvenile crust and influenced by subducted oceanic crust. Oxygen isotope compositions of garnets (δ18O = 8.0‰–9.0‰) demonstrate that the equilibrated ore fluids were inherited from fluid-rock interactions between a primary magmatic water and host tuff rocks. Our study highlights the application of garnets as a potential robust U-Pb geochronometer and isotopic tracer of ore fluids in skarn mineralizing systems in subduction-related arc environments.
In situ U-Pb dating / Garnet O isotopes / Aqishan Pb-Zn deposit / Skarn mineralization / Southern CAOB
D.E. Allen, W.E. Seyfried. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta, 69 (2005), pp. 675-683
|
G.B. Andreozzi, L. Ottolini, S. Lucchesi, G. Graziani, U. Russo. Crystal chemistry of the axinite-group minerals: a multi-analytical approach. Am. Mineral., 85 (2000), pp. 698-706
|
A. Audétat. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ. Geol., 114 (2019), pp. 1033-1056
|
T. Baker, E. Van Achterberg, C.G. Ryan, J.R. Lang. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32 (2004), pp. 117-120
|
E.A. Belousova, W.L. Griffin, S.Y. O'Reilly, N.L. Fisher. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143 (2002), pp. 602-622
|
J. Bershaw, A.R. Lechler. The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia. Chem. Geol., 516 (2019), pp. 68-78
|
M. Bertelli, T. Baker, J.S. Cleverly, T. Ulrich. Geochemical modeling of a Zn-Pb skarn: Constraints from LA−ICP−MS analysis of fluid inclusions. J. Geochem. Explor., 102 (2009), pp. 13-26
|
BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region), 2016. Regional prospecting report of the Aqishan area, Shanshan country, Xinjiang (in Chinese).
|
J. Blichert-Toft. The Hf isotopic composition of zircon reference material 91500. Chem. Geol., 253 (2008), pp. 252-257
|
J. Blichert-Toft, F. Albarède. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sc. Lett., 148 (1997), pp. 243-258
|
J. Blichert-Toft, C. Chauvel, F. Albarède. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol., 127 (1997), pp. 248-260
|
M. Burisch, S.D. Bussey, N. Landon, C. Nasi, A. Kakarieka, A. Gerdes, R. Albert, H.J. Stein, J.A. Gabites, R.M. Friedman, L.D. Meinert. Timing of magmatism and skarn formation at the Limon, Guajes, and Media Luna gold ± copper skarn deposits at Morelos, Guerrero State Mexico. Econ. Geol., 118 (2023), pp. 695-718
|
Chang, Z.S., Shu, Q.H., Meinert, L.D., 2019. Skarn deposits of China. In: Chang, Z.S., Goldfarb, R.J. (Eds.), Mineral Deposits of China. Society of Economic Geologists Special Publication 22, 189−234.
|
Z.S. Chang, L.D. Meinert. The Empire Cu-Zn mine, Idaho: exploration implications of unusual skarn features related to high fluorine activity. Econ. Geol., 103 (2008), pp. 909-938
|
J. Charvet, L.S. Shu, S. Laurent-Charvet. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates. Episodes, 30 (2007), pp. 162-186
|
H.Y. Chen, B. Wan, F. Pirajno, Y.J. Chen, B. Xiao. Metallogenesis of the Xinjiang Orogens, NW China−new discoveries and ore genesis. Ore Geol. Rev., 100 (2018), pp. 1-11
|
X.H. Cheng, F.Q. Yang, R. Zhang, Q.F. Xu, N. Li. Metallogenesis and fluid evolution of the Huangtupo Cu-Zn deposit, East Tianshan, Xinjiang, NW China: Constraints from ore geology, fluid inclusion geochemistry, H-O-S isotopes, and U-Pb zircon Re-Os chalcopyrite geochronology. Ore Geol. Rev., 121 (2020), Article 103469
|
X.H. Cheng, L.J. Yu, M.X. Ling, X.X. Geng, F.Q. Yang, Z.X. Zhang, N. Li, Y. Li. Geochronological, mineralogical and geochemical studies of sulfide mineralization in the Yueyawan mafic intrusion in the East Tianshan orogenic Belt NW China. Ore Geol. Rev., 152 (2023), Article 105257
|
G.B. Chu, H.Y. Chen, S.T. Zhang, Y. Zhang, J.M. Cheng. Geochemistry and geochronology of multi-generation garnet: New insights on the genesis and fluid evolution of prograde skarn formation. Geosci. Front., 14 (2023), Article 101495
|
N.C. Chu, R.N. Taylor, V. Chavagnac, R.W. Nesbitt, R.M. Boella, J.A. Milton, C.R. German, G. Bayon, K. Burton. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom., 17 (2002), pp. 1567-1574
|
K.C. Condie, A.K. Sinha. Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains USA. J. Metamorph. Geol., 14 (1996), pp. 213-226
|
N.J. Cook, C.L. Ciobanu, A. Pring, W. Skinner, M. Shimizu, L. Danyushevsky, B. Saini-Eidukat, F. Melcher. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim Cosmochim Acta, 73 (2009), pp. 4761-4791
|
H. Craig. Isotopic variations in meteoric water. Science, 133 (1961), pp. 1702-1703
|
C. Cui, J.J. Yu, W.Z. Yang, Y.H. Zhang, Y.C. Cui, J.L. Yu. Geochronology, geochemistry and genesis of Yamansu Formation volcanic rocks of southern Aqi Mountain in Jueluetage tectonic belt, eastern Tianshan of Xinjiang. Global Geol., 37 (2018), pp. 88-104
|
J.F. Dai, C.J. Xue, G.X. Chi, R.Z. Gao, H. Ming, X.B. Zhao, Y. Zhao. Genesis of the Aqishan skarn Zn-Pb deposit in the Eastern Tianshan, NW China: constraints from geology, geochronology and Hf-S-Pb isotopic geochemistry. Ore Geol. Rev., 123 (2020), Article 103608
|
J.F. Dai, C.J. Xue, X.B. Zhao, R.Z. Gao, H. Xing, B.W. Guan, J. Zhang. Skarn Zn-Pb metallogeny in the Tianshan: spatiotemporal distribution, geological characteristics and genetical model. Ore Geol. Rev., 157 (2023), Article 105408
|
H.T. David Jr., H.C. Eric, D.K. Jeffrey, J.D. Michael, G. Rudy, F. Diego, V. Nicholas, S. Mackenzie, G. Jens. Nature and origin of zoned polymetallic (Pb-Zn-Cu-Ag-Au) veins from the bingham canyon porphyry Cu-Au-Mo deposit. Utah. Econ. Geol., 116 (2021), pp. 747-771
|
M.J. Defant, M.S. Drummond. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347 (1990), pp. 662-665
|
Y. Demir, B. Uysal, R. Kandemir, A. Jauss. Geochemistry, fluid inclusions and stable isotope constraints (C and O) of the Sivrikaya Fe-skarn mineralization (Rize, NE Turkey). Ore Geol. Rev., 91 (2017), pp. 153-172
|
J. Deng, Q.F. Wang. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework. Gondwana Res., 36 (2016), pp. 219-274
|
X.H. Deng, J.B. Wang, F. Pirajno, Q.G. Mao, L.L. Long. A review of Cu-dominant mineral systems in the Kalatag district, East Tianshan China. Ore Geol. Rev., 117 (2020), Article 103284
|
L.M. Deng, Y.Q. Yang, Z. Li, X.J. Zhang. Sources of ore-forming materials and genesis of Aqishan Pb-Zn deposit in East Tianshan Mountains Xinjiang. Miner. Depos., 38 (2019), pp. 158-169
|
H. Ding, W.S. Ge, L.H. Dong, L.L. Zhang, X.D. Chen, Y. Liu, J.J. Nie. Genesis of the Weiquan Ag-polymetallic deposit in East Tianshan, China: evidence from Zircon U-Pb geochronology and C−H−O−S−Pb isotope systematics. Acta Geol. Sin. (English Edition), 92 (2018), pp. 1100-1122
|
Einaudi, M.T., Meinert, L.D., Newberry, R.J., 1981. Skarn Deposits. In: Skinner, B.J. (Ed.), Economic Geology Seventy-Fifth Anniversary Volume. Economic Geology Publishing Company, Lancaster, 317-391. https://doi.org/10.5382/AV75.11.
|
G.H. Fan, J.W. Lia, J.W. Valley, M.R. Scicchitano, P.E. Brown, J.H. Yang, P.T. Robinson, X.D. Deng, Y.F. Wu, Z.K. Li, W.S. Gao, S.Y. Li, S.R. Zhao. Garnet secondary ion mass spectrometry oxygen isotopes reveal crucial roles of pulsed magmatic fluid and its mixing with meteoric water in lode gold genesis. P. Natl. Acad. Sci. USA, 119 (2022)
|
D.B. Forster, P.K. Seccombe, D. Phillips. Controls on skarn mineralization and alteration at the Cadia Deposits, New South Wales Australia. Econ. Geol., 99 (2004), pp. 761-788
|
R.O. Fournier. Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol., 94 (1999), pp. 1193-1211
|
M. Frenzel, T. Hirsch, J. Gutzmer. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol. Rev., 76 (2016), pp. 52-78
|
S. Gao, X.M. Liu, H.L. Yuan, B. Hattendorf, D. Gunther, L. Chen, S.H. Hu. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Newslett., 26 (2002), pp. 191-196
|
R.Z. Gao, C.J. Xue, R.H. Man, J.F. Dai, X.B. Zhao, Y. Zhao, Y. Yalikun, B. Nurtaev, N. Pak, X.X. Mo. Zn-Pb metallogeny and prospecting orientation in China and abroad. J. Earth Sci. Envir., 43 (2021), pp. 36-79
|
L.M. Gaspar, C.M.C. Inverno. Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva mine, northeastern Portugal. Econ. Geol., 95 (2000), pp. 1259-1275
|
M. Gaspar, C. Knaack, L.D. Meinert, R. Moretti. REE in skarn systems: A LA−ICP−MS study of garnets from the Crown Jewel gold deposit. Geochim. Cosmochim. Acta, 72 (2008), pp. 185-205
|
M. Gevedon, S. Seman, J.D. Barnes, J.S. Lackey, D.F. Stockli. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet. Earth Planet. Sci. Lett., 498 (2018), pp. 237-246
|
R.J. Goldfarb, R.D. Taylor, G.S. Collins, N.A. Goryachev, O.F. Orlandini. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res., 25 (2014), pp. 48-102
|
D.I. Gorzhevskiy, G.A. Goleva, A.I. Donets. Origin of the lead-zinc deposits of the Karatau Range. Int. Geol. Rev., 31 (1989), pp. 286-296
|
J.A. Grant. The isocon diagram: a simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol., 81 (1986), pp. 1976-1982
|
J.A. Grant. Isocon analysis: a brief review of the method and applications. Phys. Chem. Earth., 30 (2005), pp. 997-1004
|
E.S. Grew. Tinzenite, a member of the axinite group with formula revised to Ca2Mn42+Al4[B2Si8O30](OH)2. Eur. J. Mineral., 30 (2018), pp. 177-182
|
W.L. Griffin, X. Wang, S.E. Jackson, N.J. Pearson, S.Y. O'Reilly, X.S. Xu, X.M. Zhou. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61 (2002), pp. 237-269
|
L.X. Gu, Z.Z. Zhang, C.Z. Wu, Y.X. Wang, J.H. Tang, C.S. Wang, A.H. Xi, Y.C. Zheng. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrol. Sin., 22 (2006), pp. 1103-1120
|
J.S. Han, H.Y. Chen, H.J. Jiang, L.D. Zhao, W.F. Zhang, C.K. Lai. Genesis of the Paleozoic Aqishan-Yamansu arc-basin system and Fe (-Cu) mineralization in the Eastern Tianshan NW China. Ore Geol. Rev., 105 (2019), pp. 55-70
|
Y.G. Han, G.C. Zhao. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev., 186 (2018), pp. 129-152
|
J.W. Hedenquist, J.B. Lowenstern. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370 (1994), pp. 519-527
|
J.J. Hemley, G.L. Cygan, J.B. Fein, G.R. Robinson, W.M. D’Angelo. Hydrothermal ore-forming processes in the light of studies in rock buffered systems; I. iron-copper-lead-zinc sulfide solubility relations. Econ. Geol., 87 (1992), pp. 1-22
|
M.H. Hey. A new review of the chlorites. Mineral. Mag., 30 (1954), pp. 277-292
|
J. Horita. Oxygen and carbon isotope fractionation in the system dolomite−water−CO2 to elevated temperatures. Geochim. Cosmochim. Acta, 129 (2014), pp. 111-124
|
M.S.A. Horstwood, J. Koěler, G. Gehrels, S.E. Jackson, N.M. McLean, C. Paton, N.J. Pearson, K. Sircombe, P. Sylvester, P. Vermeesch, J.F. Bowring, D.J. Condon, B. Schoene. Community-derived standards for LA−ICP−MS U-Th-Pb geochronology−uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res., 40 (2016), pp. 311-332
|
A. Inoue, S. Inoué, M. Utada. Application of chlorite thermometry to estimation of formation temperature and redox conditions. Clay Mineral., 53 (2018), pp. 143-158
|
B.M. Jahn, F.Y. Wu, B. Chen. Granitoids of the central asian orogenic belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. Roy. Soc. Edin., 91 (2000), pp. 181-193
|
Jowett, E.C., 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In: GAC-MAC-SEG Joint Annual Meeting, Toronto, Program with Abstracts, A62, p. 16.
|
Y.R. Jang, S.W. Kim, V.O. Samuel, S. Kwon, S. Park, M. Santosh, K. Yi. Paleozoic tectonic evolution of the proto-Korean Peninsula along the East Asian continental margin from detrital zircon U-Pb geochronology and Hf isotope geochemistry. Geosci. Front., 15 (2024), Article 101700
|
K.D. Kelley, D.L. Leach, C.A. Johnson, J.L. Clark, M. Fayek, J.F. Slack, V.M. Anderson, R.A. Ayuso, W.I. Ridley. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Econ. Geol., 99 (2004), pp. 1509-1532
|
A.I.S. Kemp, C.J. Hawkesworth, G.L. Foster, B.A. Paterson, J.D. Woodhead, J.M. Hergt, M.J. Whitehouse. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315 (2007), pp. 980-983
|
J. King, A.E. Williams-Jones, V. van Hinsberg, G. Williams-Jones. High-sulfidation epithermal pyrite-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island Indonesia. Econ. Geol., 109 (2014), pp. 1705-1733
|
D.M. Lawrence, A.H. Allibone, Z.S. Chang, S. Meffre, J.S. Lambert-Smith, P.J. Treloar. The Tongon Au deposit, Northern Côte d’Ivoire: an example of Paleoproterozoic Au skarn mineralization. Econ. Geol., 112 (2017), pp. 1571-1593
|
R.W. Le Maitre. Igneous rocks: A Classification and Glossary of Terms. (Second edition.), Cambridge University Press, Cambridge (2002), pp. 33-39
|
D.F. Li, H.Y. Chen, P. Hollings, L. Zhang, X.M. Sun, W.J. Lu, C.M. Wang, J. Fang. Isotopic footprints of the giant Precambrian Caixiashan Zn-Pb mineralization system. Precambrian Res., 305 (2018), pp. 79-90
|
X.H. Li, W.G. Long, Q.L. Li, Y. Liu, Y.F. Zheng, Y.H. Yang, K.R. Chamberlain, D.F. Wan, C.H. Guo, X.C. Wang, H. Tao. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand. Geoanal. Res., 34 (2010), pp. 117-134
|
X.H. Li, G.Q. Tang, B. Gong, Y.H. Yang, K.J. Hou, Z.C. Hu, Q.L. Li, Y. Liu, W.X. Li. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin. Sci. Bull., 58 (2013), pp. 4647-4654
|
X.M. Li, Y.X. Zhang, Z.K. Li, X.F. Zhao, R.G. Zuo, F. Xiao, Y. Zheng. Discrimination of Pb-Zn deposit types using sphalerite geochemistry: new insights from machine learning algorithm. Geosci. Front., 14 (2023), Article 101580
|
Y.S. Liu, Z.C. Hu, K.Q. Zong, C.G. Gao, S. Gao, J. Xu, H.H. Chen. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA−ICP−MS. Chin. Sci. Bull., 55 (2010), pp. 1535-1546
|
W.H. Liu, S.C. Spinks, M. Glenn, C. Macrae, M.A. Pearce. How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization. Geology, 49 (2021), pp. 1363-1368
|
X.P. Long, B. Wu, M. Sun, C. Yuan, W.J. Xiao, R. Zuo. Geochronology and geochemistry of Late Carboniferous dykes in the Aqishane-Yamansu belt, eastern Tianshan: evidence for a post-collisional slab breakoff. Geosci. Front., 11 (2020), pp. 347-362
|
W.J. Lu, H.Y. Chen, L. Zhang, J.S. Han, B. Xiao, D.F. Li, W.F. Zhang, C.M. Wang, L.D. Zhao, H.J. Jiang. Age and geochemistry of the intrusive rocks from the Shaquanzi−Hongyuan Pb-Zn mineral district: Implications for the Late Carboniferous tectonic setting and Pb-Zn mineralization in the Eastern Tianshan, NW China. Lithos, 294–295 (2017), pp. 97-111
|
K.R. Ludwig. User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, 5 (2012), pp. 1-72
|
W.H. MacLean, P. Kranidiotis. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami. Quebec. Econ. Geol., 82 (1987), pp. 951-962
|
P.D. Maniar, P.M. Piccoli. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull., 101 (1989), pp. 635-643
|
J.W. Mao, R.J. Goldfarb, Y.T. Wang, C.J. Hart, Z.L. Wang, J.M. Yang. Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: characteristics and geodynamic setting. Episodes, 28 (2005), pp. 23-36
|
J.W. Mao, F. Pirajno, Z.H. Zhang, F.M. Chai, H. Wu, S.P. Chen, L.S. Cheng, J.M. Yang, C.Q. Zhang. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes. J. Asian Earth Sci., 32 (2008), pp. 184-203
|
H. Martin, R.H. Smithies, R. Rapp, J.F. Moyen, D. Champion. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79 (2005), pp. 1-24
|
Y. Mei, D.M. Sherman, W.H. Liu, B. Etschmann, D. Testemale, J. Brugger. Zinc complexation in chloride-rich hydrothermal fluids (25–600 °C): a thermodynamic model derived from ab initio molecular dynamics. Geochim. Cosmochim. Acta, 150 (2015), pp. 265-284
|
L.D. Meinert, K.K. Hefton, D. Mayes, I. Tasiran. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ. Geol., 92 (1997), pp. 509-526
|
L.D. Meinert, J.W. Hedenquist, H. Satoh, Y. Matsuhisa. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol., 98 (2003), pp. 147-156
|
L.D. Meinert, G.M. Dipple, S. Nicolescu. World skarn deposits. J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards (Eds.), Economic Geology: One Hundredth Anniversary Volume 1905–2005, Colorado, Society of Economic Geologists, Littleton (2005), pp. 299-336
|
K. Mezger, G.N. Hanson, S.R. Bohlen. U-Pb systematics of garnet: dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba Canada. Contrib. Mineral. Petrol., 101 (1989), pp. 136-148
|
C.F. Miller, S.M. McDowell, R.W. Mapes. Hot and cold granites? implications of zircon saturation temperatures and preservation of inheritance. Geology, 31 (2003), pp. 529-532
|
P. Möller. Correlation of homogenization temperatures of accessory minerals from sphalerite-bearing deposits and Ga/Ge model temperatures. Chem. Geol., 61 (1987), pp. 153-159
|
M.L.A. Morel, O. Nebel, Y.J. Nebel-Jacobsen, J.S. Miller, P.Z. Vroon. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser ablation MC−ICP−MS. Chem. Geol., 255 (2008), pp. 231-235
|
M.N. Muhtar, C.Z. Wu, M. Santosh, R.X. Lei, L.X. Gu, S.M. Wang, K. Gan. Late Paleozoic tectonic transition from subduction to post-collisional extension in Eastern Tianshan, Central Asian Orogenic Belt. Geol. Soc. Am. Bull., 132 (2020), pp. 1756-1774
|
P. Ni, Z. Chi, J.Y. Pan. An integrated investigation of ore-forming fluid evolution in porphyry and epithermal deposits and their implication on exploration. Earth Sci. Front., 27 (2020), pp. 60-78
|
H. Ohmoto, R.O. Rye. Isotopes of sulphur and carbon. H.L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits, Wiley, New York (1979), pp. 509-567
|
C. Park, W. Choi, H. Kim, M.H. Park, I.M. Kang, H.S. Lee. Oscillatory zoning in skarn garnet: implication for tungsten ore exploration. Ore Geol. Rev., 89 (2017), pp. 1006-1018
|
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom., 26 (2011), pp. 2508-2518
|
J.A. Pearce, D.W. Peate. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci., 23 (1995), pp. 251-285
|
H.J. Peng, J.W. Mao, L. Hou, Q.H. Shu, C.Q. Zhang, H. Liu, Y.M. Zhou. Stable isotope and fluid inclusion constraints on the source and evolution of ore fluids in the Hongniu-Hongshan Cu skarn deposit, Yunnan Province, China. Econ. Geol., 111 (2016), pp. 1369-1396
|
F. Pirajno, J.W. Mao, Z.C. Zhang, Z.H. Zhang, F.M. Chai. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J. Asian Earth Sci., 32 (2008), pp. 165-183
|
F. Pirajno, R. Seltmann, Y.Q. Yang. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci. Front., 2 (2011), pp. 157-185
|
K. Pollok, B. Jamtveit, A. Purnis. Analytical transmission electron microscopy of oscillatory zoned grandite garnets. Contrib. Mineral. Petrol., 141 (2001), pp. 358-366
|
L. Qi, J. Hu, D.C. Gregoire. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51 (2000), pp. 507-513
|
K.Z. Qin, B.X. Su, P.A. Sakyi, D.M. Tang, X.H. Li, H. Sun, Q.H. Xiao, P.P. Liu. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): constraints on a ca. 280 Ma mantle plume. Am. J. Sci., 311 (2011), pp. 237-260
|
Y.J. Qiu, Y.H. Zhang. Present status of mineral deposit system of metallogenic belt and problems remained in Eastern Tianshan Xinjiang. Global Geol., 34 (2015), pp. 625-635
|
S. Rajabpour, S. Hassanpour, S.Y. Jiang. Physicochemical evolution and mechanism of a skarn system: Insights from the world-class Mazraeh Cu deposit NW Iran. Geol. Soc. Am. Bull., 136 (1–2) (2024), pp. 351-370,
CrossRef
Google scholar
|
G.E. Ray, A.D. Ettlinger, L.D. Meinert. Gold skarns: Their distribution, characteristics, and problems in classification. British Columbia Geological Survey Geological Fieldwork 1989 (1990), pp. 237-246
|
M.H. Reed, J. Palandri. Sulfide mineral precipitation from hydrothermal fluids. Rev. Mineral. Geochem., 61 (2006), pp. 609-631
|
I.M. Samson, A.E. Williams-Jones, K. Ault, J.E. Gagnon, B.J. Fryer. Source of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito, Honduras. Geology, 36 (2008), pp. 947-950
|
M. Santosh, W.J. Xiao, T. Tsunogae, T.R.K. Chetty, T. Yellappa. The Neoproterozoic subduction complex in southern India: SIMS zircon U-Pb ages and implications for Gondwana assembly. Precambrian Res., 192–195 (2012), pp. 190-208
|
R. Seltmann, D. Konopelko, G. Biske, F. Divaev, S. Sergeev. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J. Asian Earth Sci., 42 (2011), pp. 821-838
|
R. Seltmann, T.M. Porter, F. Pirajno. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review. J. Asian Earth Sci., 79 (2014), pp. 810-841
|
S. Seman, D.F. Stockli, N.M. McLean. U-Pb geochronology of grossular-andradite garnet. Chem. Geol., 460 (2017), pp. 106-116
|
T.M. Seward, A.E. Williams-Jones, A.A. Migdisov. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. Treatise Geochem., 13 (2014), pp. 29-57
|
R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., 32 (1976), pp. 751-767
|
P. Shen, K. Hattori, H.D. Pan, S. Jackson, E. Seitmuratova. Oxidation condition and metal fertility of granitic magmas: Zircon trace element data from porphyry Cu deposits in the Central Asian orogenic belt. Econ. Geol., 110 (2015), pp. 1861-1878
|
P. Shen, H.D. Pan, K. Hattori, D.R. Cooke, E. Seitmuratova. Large Paleozoic and Mesozoic porphyry deposits in the Central Asian orogenic belt: Geodynamic settings, magmatic sources, and genetic models. Gondwana Res., 58 (2018), pp. 161-194
|
Q.H. Shu, Y. Lai, Y. Sun, C. Wang, S. Meng. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol., 108 (2013), pp. 835-860
|
Q.H. Shu, Z.S. Chang, J. Hammerli, Y. Lai, J.M. Huizenga. Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, northeastern China: insights from Laser ablation ICP−MS study of fluid inclusions. Econ. Geol., 112 (2017), pp. 1441-1460
|
Q.H. Shu, Z.S. Chang, J. Mavrogenes. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: an example at the Haobugao Zn-Pb skarn, China. Geology, 49 (2021), pp. 473-477
|
R.H. Sillitoe. Porphyry copper systems. Econ. Geol., 105 (2010), pp. 3-41
|
J. Sláma, J. Kosler, D.J. Condon, J.L. Crowley, A. Gerdes, J.M. Hanchar, M.S.A. Horstwood, G.A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M.N. Tubrett, M.J. Whitehouse. Plešovice zircon−a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol., 249 (2008), pp. 1-35
|
M.P. Smith, P. Henderson, T.E.R. Jeffries, J. Long, C.T. Williams. The rare earth elements and Uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J. Petrol., 45 (2004), pp. 457-484
|
U. Söderlund, P.J. Patchett, J.D. Vervoort, C.E. Isachsen. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sc. Lett., 219 (2004), pp. 311-324
|
C.Q. Su, C.Y. Jiang, M.Z. Xia, W. Wei, R. Pan. Geochemistry and zircons SHRIMP U-Pb age of volcanic rocks of Aqishan Formation in the eastern area of North Tianshan China. Acta Petrol. Sin., 25 (2009), pp. 901-915
|
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. Geol. Soc. London Spec. Publ., 42 (1989), pp. 313-345
|
H.P. Taylor. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69 (1974), pp. 843-883
|
H.P. Taylor. Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Soc. London, 133 (1977), pp. 509-558
|
H.P. Taylor. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet. Sc. Lett., 38 (1978), pp. 177-210
|
D.H. Tomlinson, E.H. Christiansen, J.D. Keith, M.J. Dorais, R. Ganske, D. Fernandez, N. Vetz, M. Sorensen, J. Gibbs. Nature and origin of zoned polymetallic (Pb-Zn-Cu-Ag-Au) veins from the Bingham Canyon porphyry Cu-Au-Mo deposit. Utah. Econ. Geol., 116 (2021), pp. 747-771
|
J.W. Valley, J.S. Lackey, A.J. Cavosie, C.C. Clechenko, M.J. Spicuzza, M.A.S. Basei, I.N. Bindeman, V.P. Ferreira, A.N. Sial, E.M. King, W.H. Pec, A.K. Sinha, C.S. Wei. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol., 150 (2005), pp. 561-580
|
D. Vielzeuf, M. Veschambre, F. Brunet. Oxygen isotope heterogeneities and diffusion profile in composite metamorphic-magmatic garnets from the Pyrenees. Am. Mineral., 90 (2005), pp. 463-472
|
S. Wafforn, S. Seman, J.R. Kyle, D. Stockli, C. Leys, D. Sonbait, M. Cloos. Andradite garnet U-Pb geochronology of the Big Gossan skarn, Ertsberg-Grasberg mining district Indonesia. Econ. Geol., 113 (2018), pp. 769-778
|
K. Wang, Y.H. Wang, C.J. Xue, J.J. Liu, F.F. Zhang. Fluid inclusions and C−H−O−S−Pb isotope systematics of the Caixiashan sediment-hosted Zn-Pb deposit, eastern Tianshan, northwest China: implication for ore genesis. Ore Geol. Rev., 119 (2020), Article 103404
|
K. Wang, S.Y. Lin, Y.H. Wang, J.J. Liu, F.F. Zhang, W.X. Gu, W. Zhang, H. Zhang, H. Zhang. Geology, fluid inclusions, and isotope signatures reveal hydrothermal evolution and genesis of the Aqishan Pb-Zn deposit in Eastern Tianshan and implications for exploration of skarn mineralization. J. Geochem. Explor., 254 (2023), Article 107295
|
Y.H. Wang, C.J. Xue, J.J. Liu, J.P. Wang, J.T. Yang, F.F. Zhang, Z.N. Zhao, Y.J. Zhao, B. Liu. Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: slab melting and implications for porphyry copper mineralization. J. Asian Earth Sci., 103 (2015), pp. 332-349
|
Y.H. Wang, F.F. Zhang, B.C. Li. Genesis of the Yandong porphyry Cu deposit in eastern Tianshan, NW China: evidence from geology, fluid inclusions and isotope systematics. Ore Geol. Rev., 86 (2017), pp. 280-296
|
Y.H. Wang, F.F. Zhang, C.J. Xue, J.J. Liu, Z.C. Zhang, M. Sun. Geology and genesis of the Tuwu porphyry Cu deposit, Xinjiang, northwest China. Econ. Geol., 116 (2021), pp. 471-500
|
C.S. Wei, Z.F. Zhao. Paradoxically lowered oxygen isotopes of hydrothermally altered minerals by an evolved magmatic water. Sci. Rep., 12 (2022), p. 16213
|
C.S. Wei, Z.F. Zhao, M.J. Spicuzza. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in Eastern China. Chem. Geol., 250 (2008), pp. 1-15
|
B. Wen, Y.H. Zhang, W.Z. Yang, S.Z. Du, P. Wang, J.W. Liu, L. Chen. U-Pb geochronology and geochemistry of stratiform garnet from the Aqishan Pb-Zn deposit, Eastern Tianshan, Xinjiang, NW China: constraints on genesis of the deposit. Acta Geol. Sin. (English Edition), 96 (2022), pp. 135-146
|
J.B. Whalen, K.L. Currie, B.W. Chappell. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95 (1987), pp. 407-419
|
M. Wiedenbeck, P. Alle, F. Corfu, W.L. Griffin, M. Meier, F. Oberli, A. Vonquadt, J.C. Roddick, W. Speigel. Natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand. Newslett., 19 (1995), pp. 1-23
|
A. Wiewióra, Z. Weiss. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Mineral., 25 (1990), pp. 83-92
|
C. Wilhem, B.F. Windley, G.M. Stampfli. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Sci. Rev., 113 (2012), pp. 303-341
|
J.J. Wilkinson. Fluid inclusions in hydrothermal ore deposits. Lithos, 55 (2001), pp. 229-272
|
A.E. Williams-Jones, I.M. Samson, K.M. Ault, J.E. Gagnon, B.J. Fryer. The genesis of distal zinc skarns: evidence from the Mochito deposit. Honduras. Econ. Geol., 105 (2010), pp. 1411-1440
|
B.F. Windley, D. Alexeiev, W.J. Xiao, A. Kröner, G. Badarch. Tectonic models for accretion of the Central Asian orogenic belt. J. Geol. Soc. London, 164 (2007), pp. 31-47
|
F.Y. Wu, D.Y. Sun, W.C. Ge, Y.B. Zhang, M.L. Grant, S.A. Wilde, B.M. Jahn. Geochronology of the phanerozoic granitoids in northeastern China. J. Asian Earth Sci., 41 (2011), pp. 1-30
|
C.Z. Wu, S.W. Xie, L.X. Gu, I.M. Samson, T. Yang, R.X. Lei, Z.Y. Zhu, B. Dang. Shear zone-controlled post-magmatic ore formation in the Huangshandong Ni-Cu sulfide deposit, NW China. Ore Geol. Rev., 100 (2018), pp. 545-560
|
D. Xia, Y.X. Peng, Z.X. Zhu, J.L. Wang, Z.H. Luo, J. Xin, Y. Yang. Geology, geochemistry and genesis of the Aqishan Pb-Zn (Cu) deposit in Shanshan county Xinjiang. Geol. Explor., 54 (2018), pp. 41-51
|
D. Xia, Z.H. Luo, J.L. Wang, Y.X. Peng, Z.X. Zhu, Y. Yang. Fluid inclusion characteristics and metallogenic model of the Aqishan Pb-Zn (Cu) deposit, Shanshan county Xinjiang. Northwestern Geol., 53 (2020), pp. 76-90
|
W.J. Xiao, B.F. Windley, J. Hao, M.G. Zhai. Accretion leading to collision and the Permian Solonker suture. Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics, 22 (2003), pp. 1069-1076
|
W.J. Xiao, B.E. Windley, M.B. Allen, C.M. Han. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res., 23 (2013), pp. 1316-1341
|
W.J. Xiao, D.F. Song, B.E. Windley, J.L. Li, C.M. Han, B. Wan, J.E. Zhang, S.J. Ao, Z.Y. Zhang. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt. Sci. China Earth Sci., 49 (2019), pp. 1512-1545
|
G.Q. Xie, J.W. Mao, L. Bagas, B. Fu, Z.Y. Zhang. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: implications for a distal reduced skarn W formation. Mineral. Deposita, 54 (2019), pp. 459-472
|
R. Xu, W.C. Li, M.G. Deng, J.X. Zhou, T. Ren, H.J. Yu. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit in western Yunnan (SW China): insights from ore geology and C-H-O-S isotopes. Ore Geol. Rev., 107 (2019), pp. 944-959
|
C.J. Xue, X.B. Zhao, W.C. Zhao, Y. Zhao, G.Z. Zhang, B. Nurtaev, N. Pak, X.X. Mo. Deformed zone hosted gold deposits in the China−Kazakhstan−Kyrgyzstan−Uzbekistan Tian Shan: metallogenic environment, controlling parameters, and prospecting criteria. Earth Sci. Front., 21 (2020), pp. 128-155
|
A. Yakubchuk, K. Degtyarev, V. Maslennikov, A. Wurst, A. Stekhin, K. Lobanov. Tectonomagmatic settings, architecture, and metallogeny of the Central Asian copper province. Soc. Econ. Geol. Spec. Publ., 16 (2012), pp. 403-432
|
A.S. Yakubchuk, V.V. Shatov, D. Kirwin, A. Edwards, O. Tomurtogoo, G. Badarch, V.A. Buryak. Gold and base metal metallogeny of the Central Asian Orogenic supercollage. Soc. Econ. Geol., 100th Anni. Vol (2005), pp. 1035-1068
|
W.B. Yang, H.C. Niu, P. Hollings, S.E. Zurevinski, N.B. Li. The role of recycled oceanic crust in the generation of alkaline A-type granites. J. Geophy. Res. Solid Earth, 122 (2017), pp. 9775-9783
|
L. Ye, N.J. Cook, C.L. Ciobanu, Y.P. Liu, Q. Zhang, T.G. Liu, W. Gao, Y.L. Yang, L. Danyushevskiy. Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol. Rev., 39 (2011), pp. 188-217
|
Z.J. Zang, L.L. Dong, W. Liu, H. Zhao, X.S. Wang, K.D. Cai. Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system. Sci. Rep., 9 (2019), p. 10382
|
D.G. Zhai, A.E. Williams-Jones, J.J. Liu, D. Selby, P.C. Voudouris, S. Tombros, K. Li, P.L. Li, H.J. Sun. The genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, Northeastern China. Econ. Geol., 115 (2020), pp. 101-128
|
Z.C. Zhang, T. Hou, M. Santosh, H.M. Li, J.W. Li, Z.H. Zhang, X.Y. Song, M. Wang. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: an overview. Ore Geol. Rev., 57 (2014), pp. 247-263
|
F.F. Zhang, Y.H. Wang, J.J. Liu. Fluid inclusions and H−O−S−Pb isotope systematics of the Baishan porphyry Mo deposit in Eastern Tianshan, China. Ore Geol. Rev., 78 (2016), pp. 409-423
|
F.F. Zhang, Y.H. Wang, C.J. Xue, J.J. Liu, W. Zhang. Fluid inclusion and isotope evidence for magmatic-hydrothermal fluid evolution in the Tuwu porphyry copper deposit, Xinjiang NW China. Ore Geol. Rev., 113 (2019), Article 103078
|
Y. Zhao, C.J. Xue, S.A. Liu, R. Mathur, X.B. Zhao, Y.Q. Yang, J.F. Dai, R.H. Man, X.M. Liu. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system. Geochim. Cosmochim. Acta, 249 (2019), pp. 42-58
|
Z.F. Zhao, Y.F. Zheng. Calculation of oxygen isotope fractionation in magmatic rocks. Chem. Geol., 193 (2003), pp. 59-80
|
Y.F. Zheng. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta, 57 (1993), pp. 1079-1091
|
Y.F. Zheng, Y.B. Wu, B. Gong, R.X. Chen, J. Tang, Z.F. Zhao. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sc. Lett., 256 (2007), pp. 196-210
|
J.X. Zheng, T.Y. Zhao, Q. Han, P. Li, Z. Tang, Y.F. Sun, X. Liu, H. Li, C. Chang. Volcanic zircon U-Pb dating and geochemical characteristics of Aqishan Formation in eastern Tianshan Mountain and its significance. Xinjiang Geol., 35 (2017), pp. 446-454
|
R.C. Zhong, J. Brugger, Y.J. Chen, W.B. Li. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol., 395 (2015), pp. 154-164
|
T.F. Zhou, F. Yuan, D.Y. Zhang, Y. Fan, S. Liu, M.X. Peng, J.D. Zhang. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan Xinjiang. Acta Petrol. Sin., 26 (2010), pp. 478-502
|
J.J. Zhu, R.Z. Hu, J.P. Richards, X.W. Bi, H. Zhong. Genesis and magmatic-hydrothermal evolution of the Yangla skarn Cu deposit, Southwest China. Econ. Geol., 110 (2015), pp. 631-652
|
/
〈 |
|
〉 |